Principal Features

Excellent High-Temperature Strength and Environment Resistance

HAYNES® 188 alloy (UNS R30188) is a cobalt-nickel-chromium-tungsten alloy that combines excellent high-temperature strength with very good resistance to oxidizing environments up to 2000°F (1095°C) for prolonged exposures, and excellent resistance to sulfate deposit hot corrosion. It is readily fabricated and formed by conventional techniques, and has been used for cast component. Other attractive features include excellent resistance to molten chloride salts, and good resistance to gaseous sulfidation.

Readily Fabricated

HAYNES® 188 alloy has good forming and welding characteristics. It may be forged or other hot-worked, providing that it is held at 2150°F (1175°C) for a time sufficient to bring the entire piece to temperature. As a consequence of its good ductility, 188 alloy is also readily formed by cold working. The alloy does work-harden rapidly, however, so frequent intermediate annealing treatments may be needed for complex component forming operations. All hot- or cold- worked parts should be annealed and rapidly cooled in order to restore the best balance of properties.

The alloy can be welded by both manual and automatic welding methods, including gas tungsten arc (TIG), gas metal arc (MIG), electron beam and resistance welding. It exhibits good restraint welding characteristics.

Heat Treatment

Wrought HAYNES® 188 alloy is furnished in the solution heat treated condition, unless otherwise specified. The alloy is normally solution heat-treated at 2125-2175°F (1163-1191°C) and rapidly cooled or water quenched for optimal properties.

Annealing at temperatures less than the solution heat-treating temperature will produce some carbide precipitation in alloy 188, which may affect the alloy’s properties.

Applications

HAYNES® 188 alloy combines properties which make is suitable for a variety of fabricated component applications in the aerospace industry. It is widely used in established military and commercial gas turbine engines for combustion cans, transitions ducts, and afterburner components. It shares applications in newer engine programs with a more recently developed material, 230® alloy, which possesses improved properties.

*Please contact our technical support team if you have technical questions about this alloy.

pdf-icon-red.tmb-size-25-25Print Brochure

Nominal Composition

Weight %
Cobalt 39 Balance
Nickel 22
Chromium 22
Tungsten 14
Iron 3 max.
Manganese 1.25 max.
Silicon 0.35
Carbon 0.10
Lanthanum 0.03
Boron 0.015 max.

Creep and Stress-Rupture Strength

HAYNES 188 alloy is a solid-solution- strengthened material which combines excellent high-temperature strength with good fabricability at room temperature. It is particularly effective for very long-term applications at temperatures of 1200°F (650°C) or more. It is stronger than nickel-base solid-solution-strengthened alloys, and far stronger than simple nickel chromium or iron-nickel-chromium heat-resistant alloys. This can allow for significant section thickness reduction when it is substituted for these materials.

Comparision of Sheet Materials: Stress to Produce 1% Creep in 1000 Hours

188 Plate, Solution-Annealed

Temperature Creep Approximate Initial Stress to Produce Specified Creep in
10 h 100 h 1,000 h 10,000 h
°F °C % ksi MPa ksi MPa ksi MPa ksi MPa
1200 649 0.5
1 35* 241*
R 78 538 59 407 45* 310*
1300 704 0.5 41 283 28 193 18* 124*
1 44 303 31.5 217 22 152
R 73* 503* 54 372 40 276 28 193
1400 760 0.5 26 179 17 117 11.5 79
1 29 200 20.5 141 14.5* 100*
R 51 352 37 255 26 179 18.5* 128*
1500 816 0.5 16 110 11.0 76 7.7* 53*
1 19 131 13.5 93 9.3 64
R 36 248 25 172 17.5 121 12.0 83
1600 871 0.5 11.5 79 7.5 52 5.5* 38*
1 13.0 90 9.0 62 6.4* 44*
R 25 172 17.0 117 11.6 80 7.8 54
1700 927 0.5 8.0 55 5.2 36 3.6* 25*
1 9.2 63 6.0 41 4.3* 30*
R 16.5 114 11.1 77 7.3 50 4.5* 31*
1800 982 0.5 5.6 39 3.6 25 2.3 16 1.35 9.3
1 6.3 43 4.2 29 2.5 17 1.42 9.8
R 11.5 79 7.0 48 4.0 28 2.2* 15*
1900 1038 0.5 3.7 26 2.3* 16*
1 4.2 29 2.5* 17*
R 7.2* 50* 4.4 30 2.2* 15*
2000 1093 0.5 2.3 16 1.35 9.3
1 2.6 18 1.42 9.8
R 4.7 32 2.3 16 1.10* 7.6*

*Significant extrapolation

188 Sheet, Solution-Annealed

Temperature Creep Approximate Initial Stress to Produce Specified Creep in
10 h 100 h 1,000 h
°F °C % ksi MPa ksi MPa ksi MPa
1400 760 0.5 22.5 155 16.4 113 11.7 81
1 25.5 176 18.5 128 13.3 92
R 43.0* 296* 32.0 221 23.0 159
1500 816 0.5 15.5 107 11.1 77 7.8 54
1 17.6 121 12.6 87 8.8 61
R 31.0 214 21.7 150 15.0 103
1600 871 0.5 10.7 74 7.5 52 5.0 34
1 12.2 84 8.4 58 5.7 39
R 21.0 145 14.4 99 9.4 65
1700 927 0.5 7.3 50 4.9 34 3.1 21
1 8.2 57 5.6 39 3.6 25
R 14.3 99 9.1 63 5.5* 38*
1800 982 0.5 4.9 34 3.1 21 1.8 12
1 5.6 39 3.6 25 2.1 14
R 9.1 63 5.4 37 3.0 21
1900 1038 0.5 3.1 21 1.9 13 1.2 8.3
1 3.6 25 2.2 15 1.4 9.7
R 5.5 38 3.2 22 2.0 14
2000 1093 0.5 2.0* 14* 1.2 8.3 0.70 4.8
1 2.3* 16* 1.4 9.7 0.90 6.2
R 3.3* 23* 2.0 14 1.2 8.3

*Significant extrapolation

Tensile Properties

Hot-Rolled and Solution-annealed Plate

Test Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation
°F °C ksi MPa ksi MPa %
RT RT 70.1 483 143.8 991 50.6
1000 538 45.7 315 120.6 832 60.3
1200 649 45.1 311 121.6 838 62.8
1400 760 43.6 301 84.1 580 85.6
1600 871 37.1 256 49.5 341 97.9
1800 982 19.2 132 27.2 188 102.6
2000 1093 9.6 66 13.9 96 87.1

Cold-Rolled and Solution-annealed Sheet

Test Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation
°F °C ksi MPa ksi MPa %
RT RT 70.1 483 142.4 982 50.9
1000 538 44.8 309 117.4 809 58.8
1200 649 44.8 309 119.1 821 58.6
1400 760 43.8 302 81.6 563 81.8
1600 871 37.8 261 47.0 324 103.9
1800 982 18.2 125 25.4 175 81.0
2000 1093 8.5 59 12.4 85 49.7

Hardness Data

Solution Annealed Room Temperature Hardness

Form Hardness, HRBW Typical ASTM Grain Size
Sheet 98 5 – 7.5
Plate 98 4 – 8
Bar 96 3.5 – 7.5

All samples tested in solution-annealed condition
HRBW = Hardness Rockwell “B”, Tungsten Indentor.

High-Temperature Hardness

Temperature 188 25 6B 230® 556®
Vickers Hardness Rockwell Hardness Vickers Hardness Rockwell Hardness Vickers Hardness Rockwell Hardness Vickers Hardness Rockwell Hardness Vickers Hardness Rockwell Hardness
°F °C DPN HR C/BW DPN HR C/BW DPN HR C/BW DPN HR C/B DPN HR C/BW
72 RT 248 21.8 C 285 27.8 C 374 38.2 C 195 92.0 BW 203 93.6 BW
800 427 170 86.3 BW 171 86.7 BW 269 25.5 C 142 77.3 BW 132 73.0 BW
1000 538 159 83.0 BW 160 73.3 BW 247 21.8 C 139 76.0 BW 129 71.1 BW
1200 649 147 77.2 BW 150 80.0 BW 225 97.5 BW 132 73.0 BW 118 66.5 BW
1400 760 129 70.7 BW 134 73.7 BW 153 81.0 BW 125 70.0 BW 100 55.0 BW
1600 871 89 93 91 75 67
1800 982 49 52 55 42 41*

HRC = Hardness Rockwell “C”.
HRBW = Hardness Rockwell “B”, Tungsten Indentor.

Impact Strength Properties

Test Temperature Typical Charpy V-Notch Impact Resistance
°F °C ft.-lbs J
-300 -185 116 158
-150 -100 131 178
70 20 143 194
1000 540 117 159
1300 705 107 145

*Average of longitudinal and transverse tests on solution-annealed plate

Thermal Stability

HAYNES® 188 alloy is similar to the solid-solution-strengthened superalloys, such as alloy 625 or HASTELLOY® X alloy,  which will precipitate deleterious phases upon such long-term exposure. In this case. the phase in question is a CO2W laves phase.  which serves to impair both tensile ductility and impact strength. The behavior of 188 alloy is significantly better in this regard than HAYNES® 25 alloy, which it replaced; but for applications where thermal stability is important, 230® alloy is recommended.

Room-Temperature Properties of Plate after Thermal Exposure

Exposure Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation Impact Strength
°F °C h ksi MPa ksi MPa % ft.- lbs. J
1200 650 0 65.0 450 140.0 965 56.0 143 194
8000 79.7 550 151.6 1045 29.1 23 31
1400 760 0 65.0 450 140.0 965 56.0 143 194
8000 74.0 510 147.9 1020 10.8 3 4
1600 870 0* 70.1 485 146.0 1005 50.4 143 194
1000 70.7 490 157.5 1085 28.7 10 13
4000 68.8 475 156.0 1075 26.6 10 13
8000* 64.5 445 147.4 1015 22.2 9 12
16000 63.8 440 146.1 1005 24.0 8 11

*Average of two test exposure. All other single exposures.

Comparative Impact Strength after 8000-Hour Exposures

Alloy Solution-Annealed Charpy V-Notch Impact Charpy V-Notch Impact Following Exposure For 8000 Hours at Temperatures
1200°F 650°C 1400°F 760°C 1600°F 870°C
ft.-lbs. J ft.-lbs J ft.-lbs J ft.-lbs J
230® 54 73 30 41 21 28 21 28
188 143 194 23 31 3 4 9 12
X 54 73 15 20 8 11 15 20
625 81 110 5 7 5 7 15 20

Physical Properties

Physical Property British Units Metric Units
Density RT
0.324 lb/in3
RT

8.98 g/cm3

Melting Temperature 2400-2570°F - 1315-1410°C -
Electrical Resistivity RT 39.6 µohm-in RT 101.0 µohm-cm
200°F 40.3 µohm-in 100°C 103.0 µohm-cm
400°F 41.5 µohm-in 200°C 105.0 µohm-cm
600°F 42.7 µohm-in 300°C 107.7 µohm-cm
800°F 43.8 µohm-in 400°C 110.5 µohm-cm
1000°F 44.7 µohm-in 500°C 112.7 µohm-cm
1200°F 45.6 µohm-in 600°C 114.8 µohm-cm
1400°F 46.1 µohm-in 700°C 116.4 µohm-cm
1600°F 46.5 µohm-in 800°C 117.5 µohm-cm
1800°F 46.7 µohm-in 900°C 118.3 µohm-cm
2000°F 46.8 µohm-in 1000°C 119.1 µohm-cm
Specific Heat RT 0.096 Btu/lb-°F RT 12.1 J/kg·°C
200°F 0.101 Btu/lb-°F 100°C 423 J/kg·°C
400°F 0.106 Btu/lb-°F 200°C 444 J/kg·°C
600°F 0.112 Btu/lb-°F 300°C 465 J/kg·°C
800°F 0.117 Btu/lb-°F 400°C 486 J/kg·°C
1000°F 0.122 Btu/lb-°F 500°C 502 J/kg·°C
1200°F 0.127 Btu/lb-°F 600°C 523 J/kg·°C
1400°F 0.131 Btu/lb-°F 700°C 540 J/kg·°C
1600°F 0.136 Btu/lb-°F 800°C 557 J/kg·°C
1800°F 0.140 Btu/lb-°F 900°C 573 J/kg·°C
2000° F 0.145 Btu/lb-°F 1000°C 590 J/kg·°C
Thermal Conductivity RT
72 Btu-in/ft2-hr-°F
RT 10.4 W/m-°C
200°F
84 Btu-in/ft2-hr-°F
100°C 12.2 W/m-°C
400°F
100 Btu-in/ft2-hr-°F
200°C 14.3 W/m-°C
600°F
112 Btu-in/ft2-hr-°F
300°C 15.9 W/m-°C
800°F
125 Btu-in/ft2-hr-°F
400°C 17.5 W/m-°C
1000°F
138 Btu-in/ft2-hr-°F
500°C 19.3 W/m-°C
1200°F
152 Btu-in/ft2-hr-°F
600°C 21.1 W/m-°C
1400°F
167 Btu-in/ft2-hr-°F
700°C 23.0 W/m-°C
1600°F
174 Btu-in/ft2-hr-°F
800°C 24.8 W/m-°C
1800°F
189 Btu-in/ft2-hr-°F
900°C 25.5 W/m-°C
2000°F
204 Btu-in/ft2-hr-°F
1000°C 27.6 W/m-°C
Thermal Diffusivity RT
4.5 x 10-3 in2/sec
RT
29.2 x 10-3 cm2/sec
200°F
5.0 x 10-3 in2/sec
100°C
32.7 x 10-3 cm2/sec
400°F
5.6 x 10-3 in2/sec
200°C
36.5 x 10-3 cm2/sec
600°F
6.0 x 10-3 in2/sec
300°C
38.7 x 10-3 cm2/sec
800°F
6.4 x 10-3 in2/sec
400°C
40.8 x 10-3 cm2/sec
1000°F
6.7 x 10-3 in2/sec
500°C
43.5 x 10-3 cm2/sec
1200°F
7.1 x 10-3 in2/sec
600°C
45.7 x 10-3 cm2/sec
1400°F
7.6 x 10-3 in2/sec
700°C
48.2 x 10-3 cm2/sec
1600°F
7.6 x 10-3 in2/sec
800°C
50.4 x 10-3 cm2/sec
1800°F
8.0 x 10-3 in2/sec
900°C
50.4 x 10-3 cm2/sec
2000°F
8.4 x 10-3 in2/sec
1000°C
53.0 x 10-3 cm2/sec
Mean Coefficient of Thermal Expansion 75 - 200°F
6.7 10-6 in/in/°F
25 - 100°C
12.1 10-6 m/m/°C
75 - 400°F
7.1 10-6 in/in/°F
25 - 200°C
12.7 10-6 m/m/°C
75 - 600°F
7.3 10-6 in/in/°F
25 - 300°C
13.1 10-6 m/m/°C
75 - 800°F
7.3 10-6 in/in/°F
25 - 400°C
13.5 10-6 m/m/°C
75 - 1000°F
7.7 10-6 in/in/°F
25 - 500°C
13.9 10-6 m/m/°C
75 - 1200°F
8.2 10-6 in/in/°F
25 - 600°C
14.3 10-6 m/m/°C
75 - 1400°F
8.5 10-6 in/in/°F
25 - 700°C
15.0 10-6 m/m/°C
75 - 1600°F
8.8 10-6 in/in/°F
25 - 800°C
15.5 10-6 m/m/°C
75 - 1800°F
9.1 10-6 in/in/°F
25 - 900°C
16.0 10-6 m/m/°C
- - 25 - 1000°C
16.5 10-6 m/m/°C
Dynamic Modulus of Elasticity RT
33.7 x 106 psi
RT 232 GPa
200°F
32.9 x 106 psi
100°C 226 GPa
400°F
31.8 x 106 psi
200°C 220 GPa
600°F
30.8 x 106 psi
300°C 213 GPa
800°F
29.5 x 106 psi
400°C 206 GPa
1000°F
28.6 x 106 psi
500°C 198 GPa
1200°F
27.1 x 106 psi
600°C 189 GPa
1400°F
25.6 x 106 psi
700°C 180 GPa
1600°F
24.0 x 106 psi
800°C 171 GPa
1800°F
22.2 x 106 psi
900°C 160 GPa
2000°F
20.2 x 106 psi
1000°C 150 GPa
Dynamic Shear Modulus RT
13.0 x 106 psi
RT 90 GPa
400°F
12.5 x 106 psi
100°C 88 GPa
600°F
12.0 x 106 psi
200°C 86 GPa
800°F
11.4 x 106 psi
300°C 83 GPa
1000°F
10.9 x 106 psi
400°C 80 GPa
1200°F
10.3 x 106 psi
500°C 76 GPa
1400°F
9.7 x 106 psi
600°C 73 GPa
1600°F
9.0 x 106 psi
700°C 69 GPa
1800ºF 
8.3 x 106 psi
800ºC  65 GPa 
2000°F
7.5 x 106 psi
900°C 61 GPa
 -  - 1000ºC 56 GPa
Poisson's Ratio RT°F 0.3 RT 0.30
200°F 0.29 100°C 0.29
400°F 0.27 200°C 0.27
600°F 0.29 300°C 0.29
800°F 0.29 400°C 0.29
1000°F 0.31 500°C 0.30
1200°F 0.32 600°C 0.31
1400°F 0.32 700°C 0.32
1600°F 0.33 800°C 0.32
1800°F 0.33 900°C 0.33
2000°F 0.34 1000°C 0.33

RT = Room Temperature

Low Cycle Fatigue Properties

HAYNES® 188 alloy exhibits very good low cycle fatigue properties at elevated temperatures. Results shown below are for strain-controlled tests run in the temperature range from 800°F (425°C) to 1600°F (870°C). Samples were machined from bar. Tests were run with fully reversed strain (R = -1) at a frequency of 20 cpm (0.33 Hz).

Comparative Low Cycle Fatigue Properties.

The graph below compares the low cycle fatigue lives of a number of alloys tested at 800°F (425°C) in both the as-received and 1400°F (760°C)/1000 hour pre-exposed condition. Samples were machined from plate or bar, after exposure for exposed samples. Tests were again run with fully reversed strain (R = -1) at a frequency of 20 cpm (0.33 Hz). TSR = Total Strain Range.

Oxidation Resistance

HAYNES® 188 alloy exhibits very good resistance to both air and combustion gas oxidizing environments, and can be used for long-term continuous exposure at temperatures up to 2000°F (1095°C). For exposures of short duration, 188 alloy can be used at higher temperatures.

Comparative Oxidation Resistance in Flowing Air, 1008 Hours

Alloy 1800°F (980°C) 2000°F (1095°C) 2100°F (1150°C)
Average Metal Affected** Metal Loss Average Metal Affected** Metal Loss Average Metal Affected** Metal Loss
mils μm mils μm mils μm mils μm mils μm mils μm
188 1.1 28 0.1 3 3.7 94 0.5 13 10.7 272 8.6 218
230® 1.5 38 0.2 5 3.3 84 0.5 13 4.4 112 1.2 30
X 1.5 38 0.2 5 4.4 112 1.3 33 6.1 115 3.6 91
625 1.9 48 0.4 10 7.8 198 3.5 89 20.2 513 18.3 465
617 2.0 51 0.3 8 3.8 97 0.6 15 5.2 132 1.0 25

*Flowing air at a velocity of 7.0 ft/min (213.4 cm/min) past the samples. Samples cycled to room temperature once per week.
**Metal Loss + Average Internal Penetration

Oxidation Test Parameters

Burner rig oxidation tests were conducted by exposing sampIes 3/8 in. x 2.5 in. x thickness (9 mm x 64 mm x thickness), in a rotating holder, to products of combustion of No. 2 fuel oil burned at a ratio of air to fuel of about 50:1. (Gas velocity was about 0.3 mach). Samples were automatically removed from the gas stream every 30 minutes and fan-cooled to near ambient temperature and then reinserted into the flame tunnel.

Comparative Burner Rig Oxidation Resistance 1000 Hour Exposure at 1800°F (980°C)

1000 Hour Exposure at 1800°F (980°C), 30 Minute Cycles
Alloy Metal Loss Average Metal Affected Maximum Metal Affected
mils μm mils μm mils μm
188 1.1 28 3.2 81 3.9 99
230® 2.8 71 5.6 142 6.4 163
617 2.4 61 5.7 145 6.9 175
625 3.7 94 6.0 152 6.6 168
X 4.3 109 7.3 185 8.0 203

Comparative Burner Rig Oxidation Resistance at 2000ºF (1095ºC) for 500 Hours

500 Hour Exposure at 2000°F (1095°C), 30 Minute Cycles
Alloy Average Metal Loss Per Side Average Metal Affected Maximum Metal Affected
mils μm mils μm mils μm
230® 7.1 180 9.9 251 11.8 300
188 10.9 277 13.1 333 14.1 358
X 11.6 295 14.0 356 15.1 384
617 13.3 338 20.9 531 21.2 538
625 Consumed

 

*625 was consumed

Water Vapor Oxidation Data

Air + 20% H2O at 1800°F (982°C), 1008 hours, cycled weekly
Alloy Metal Loss Average Metal Affected
mils μm mils μm
214® 0.04 1 0.64 16
230® 0.19 5 1.59 40
625 0.36 9 1.66 42
188 0.18  5  1.48 38
X 0.27 7 1.77 45
617 0.39 10 1.99 50
556® 0.35 9 1.85 47
HR‐120® 0.38 10 2.08 53
800HT 2.47 63 5.07 129
HR‐160® 0.77 20 5.57 141

Hot Corrosion Resistance

HAYNES® 188 alloy exhibits excellent resistance to sulfate deposit type hot corrosion. Tests were conducted in a low velocity burner rig burning No. 2 Fuel oil with 0.4 percent sulfur. The air:fuel ratio was 30:1. Artificial sea water was injected at a rate equivalent to 5 ppm salt. Tests were run for 1000 hours, with samples cycled out of the gas stream once an hour and cooled to near ambient temperature. Gas velocity was 13 ft./ sec. (4 m/s).

Hot Corrosion Resistance at 1650°F (900°C)

Alloy Metal Loss Average Metal Affected
mils µm mils µm
188 0.8 20 2.7 69
230® 1.2 30 5.1 130
625 1.8 46 5.2 132
X 1.6 41 5.5 140

Schematic Representation of Metallographic Technique
Used for Evaluating Environmental Tests

Sulfidation Resistance

HAYNES® 188 alloy has very good resistance to gaseous sulfidation envronments encountered in various industrial applications. Tests were conducted at 1400°F (760°C) in a gas mixture consisting of 5 percent H2, 5 percent CO1, 1 percent CO2 , and 0.15 percent H2S, balance Ar. Coupons were exposed for 215 hours. This is a severe test, with equilibrium sulfur partial pressure of 10-6 to 10-7 and oxygen partial pressures less than that needed to produce protective chromium oxide scales.

Sulfidation Resistance at 1400°F (760°C)

215 hours in an atmosphere of 5% H2 + 5% CO + 0.15% H2S + Balance Ar
Alloy 1400°F (760°C) 1600°F (871°C)
Metal Loss Average Metal Affected Metal Loss Average Metal Affected
mils μm mils μm mils μm mils μm
25 0.5 13 1.5 38 1.1 28 5.3 135
188 1.6 41 3.3 84 1.7 44 5.7 145
556® 3.1 77 4.9 124 6.2 157 16.4 417
310 6.2 157 9.1 231 8.3 211 14.1 358
617 5.0 127 10.8 274 3.8 97 17.2 437
800H 7.1 180 11.2 284 7.9 201 >27.6 >701
625 6.6 168 12.6 320 Partially Consumed
X >29.5 >749 >21.7 >551

Schematic Representation of Metallographic Technique
Used for Evaluating Environmental Tests

Fabrication Characteristics

Heat Treatment

HAYNES® 188 alloy is normally solution heat treated in the range of 2125-2175°F for a time to commensurate with section thickness. Annealing during fabrication can be performed at even lower temperatures, but a final, subsequent solution heat treatment is needed to produce optimum properties and structure.

Effect of Cold Reduction Upon Room-Temperature Properties*

Cold Reduction Subsequent Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation Hardness
% ksi MPa ksi MPa % HR BW/C
0 NONE 66.9 460 137.2 945 54.2 98.1 HRBW
10 105.9 730 151.5 1045 45.1 32.1 HRC
20 132.9 915 165.9 1145 28.3 37.1 HRC
30 167.0 1150 195.1 1345 13.4 41.2 HRC
40 176.8 1220 214.9 1480 9.8 43.5 HRC
10 1950°F (1065°C) for 5 min. 91.2 630 148.5 1025 41.4 29.7 HRC
20 87.8 605 153.3 1055 41.0 27.8 HRC
30 84.2 580 158.3 1090 41.3 29.6 HRC
40 90.8 625 162.7 1120 39.8 31.1 HRC
10 2050°F (1120°C) 64.7 445 143.0 985 50.1 21.9 HRC
20 71.4 490 149.0 1025 47.2 24.5 HRC
30 80.3 555 155.2 1070 43.7 27.6 HRC
40 86.9 600 159.0 1095 43.2 29.5 HRC
10 2150°F (1175°C) for 5 min. 61.9 425 139.6 965 55.3 95.6 HRBW
20 64.9 445 141.3 975 53.3 97.1 HRBW
30 66.5 460 142.8 985 51.8 98.5 HRBW
40 64.1 440 141.5 975 55.5 97.2 HRBW

*Based upon rolling reduction taken upon 0.125 in. (3.2 mm) thick sheet. Duplicate tests.
HRC = Hardness Rockwell “C”.
HRBW= Hardness Rockwell “B”, Tungsten Indentor.

Welding

HAYNES® 188 alloy is readily welded by Gas Tungsten Arc (GTAW), Gas Metal Arc (GMAW), Shielded Metal Arc (SMAW), electron bean welding, and resistance welding techniques. Its welding characteristics are similar to those of HAYNES® 25 alloy. Submerged Arc welding is not recommended, as this process is characterized by high heat input to the base metal and slow cooling of the weld. These factors can increase weld restraint and promote cracking.

Base Metal Preparation

The joint surface and adjacent area should be thoroughly cleaned before welding. All grease, oil, crayon marks, sulfur compounds, and other foreign matter should be removed. Contact with copper or copper-bearing materials in the joint area should be avoided. It is preferable, but not necessary, that the alloy be in the solution-annealed condition when welded.

Filler Metal Selection

Matching composition filler metal is recommended for joining alloy 188. For joining section thicknesses greater than 3/8 inch (9.5 mm), HAYNES® 230-W® filler wire (AWS A5.14 ERNiCrWMo-1) is suggested. For shielded metal arc welding, HAYNES® 25 alloy electrodes (AMS 5797) are suggested. For dissimilar joining of 188 alloy to nickel-, cobalt-, or iron- base materials, 188 alloy itself, 230-W® filler wire, HAYNES® 556® alloy (AMS 5831), HASTELLOY® S alloy (AMS 5838), or HASTELLOY® W alloy (AMS 5786) welding products are suggested, depending upon the particular case. Please click here or see the Haynes Welding SmartGuide for more information.

Preheating, Interpass Temperatures, and Postweld Heat Treatment

Preheat is not required. Preheat is generally specified as room temperature (typical shop conditions). Interpass temperature should be maintained below 200°F (93°C). Auxiliary cooling methods may be used between weld passes, as needed, providing that such methods do not introduce contaminants. Postweld heat treatment is not generally required for 188 alloy. For further information, please click here.

Welded Tensile – Room Temperature

Condition 0.2% Yield Strength Ultimate Tensile Strength Elongation
ksi MPa ksi MPa %
Sheet 68 469 133 917 65
Welded Transverse 70 483 123 848 31
All Weld Metal 79 545 117 807 46

Machining

Machining information can be found here.

Specifications and Codes

Specifications

HAYNES® 188 alloy (R30188)
Sheet, Plate & Strip AMS 5608
Billet, Rod & Bar AMS 5772
Coated Electrodes
Bare Welding Rods & Wire
Seamless Pipe & Tube
Welded Pipe & Tube
Fittings
Forgings AMS 5772
DIN
Others

Codes

HAYNES® 188 alloy (R30188)
MMPDS 6.4.2

Disclaimer

Haynes International makes all reasonable efforts to ensure the accuracy and correctness of the data displayed on this site but makes no representations or warranties as to the data’s accuracy, correctness or reliability. All data are for general information only and not for providing design advice. Alloy properties disclosed here are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature and, as such, are indicative only of the results of such tests and should not be considered guaranteed maximums or minimums.  It is the responsibility of the user to test specific alloys under actual service conditions to determine their suitability for a particular purpose.

For specific concentrations of elements present in a particular product and a discussion of the potential health affects thereof, refer to the Safety Data Sheets supplied by Haynes International, Inc.  All trademarks are owned by Haynes International, Inc., unless otherwise indicated.

Alloy Brochure

Download