Principal Features

Excellent High Temperature Strength

HAYNES® 282® alloy (UNS N07208) is a, wrought, gamma-prime strengthened superalloy developed for high temperature structural applications, especially those in aero and industrial gas turbine engines. It possesses a unique combination of creep strength, thermal stability, weldability, and fabricability not found in currently available commercial alloys. The excellent creep strength in the temperature range of 1200 to 1700°F (649 to 927°C) surpasses that of Waspaloy alloy, and approaches R-41 alloy without sacrificing weldability.

Easily Fabricated

This high level of creep strength in HAYNES® 282® alloy has been attained at a relatively low volume fraction of the strengthening gamma-prime phase, resulting in outstanding resistance to strain-age cracking (normally a problem with superalloys in this creep strength range). Additionally, slow gamma-prime precipitation kinetics allow for the alloy to have excellent ductility in the as-annealed condition. Consequently, HAYNES® 282® alloy exhibits superior weldability and fabricability. Machinability is similar to that of Waspaloy.

Heat Treatment

HAYNES® 282® alloy is provided in the solution-annealed condition, in which it is readily formable. The typical solution-annealing temperature is in the range of 2050 to 2100°F (1121 to 1149°C). After component fabrication, an age hardening treatment is required to put the alloy into the high-strength condition. The standard two-step treatment includes 1850°F (1010°C) / 2 hours / AC (air cool) + 1450°F (788°C) / 8 hours / AC, but alternative heat treatments are available to optimize properties for specific performance requirements or for manufacturability.

NOTE: The heat treatment for Advanced Ultra-Supercritical (A-USC), Supercritical CO2, and Other ASME Boiler Code Applications is different from the standard heat treatment.

Product Forms

HAYNES® 282® alloy is available in a full range of product forms and sizes, including plate, sheet and coil products from foil thickness up to cross-sections greater than 2” (>50mm) thick; Bar and wire from up to 9” in diameter, Reforge billet and ingot products from 4” up to 20” (100-500mm) diameters; and seamless and welded Pipe and tube in some standard sizes. Vacuum castings have also been produced for various applications, and powder products are available to support many Additive Manufacturing methods.

Applications

The features of HAYNES® 282® alloy make it suitable for critical gas turbine applications found in the combustors, turbine and exhaust sections, and nozzle components. Fabrication methods commonly employed include sheet and plate fabrications, seamless and flash butt-welded rings, closed die forgings and components directly machined from bar and heavy plate blanks. In industrial gas turbines, HAYNES® 282® alloy is defining performance standards for combustors and transition sections, and other hot-gas-path components requiring exceptional creep life and low cycle fatigue (LCF) resistance. Automotive turbocharger applications, such as seals and high temperature springs, benefit from the superior high-temperature properties.

HAYNES® 282® alloy is also a strong candidate for use in Advanced Ultra-Supercritical (A-USC) boiler and steam turbines, Supercritical CO2 power cycle, and concentrating solar power plant, where creep life is required to surpass 100,000 hours at 14.5 ksi (100 MPa) at 1400°F (760°C).  ASME Code Case 3024 covers a new single-step age-hardening treatment for HAYNES® 282® alloy for use in Advanced Ultra-Supercritical (A-USC) and Supercritical COand other ASME Boiler Code applications.

*Please contact our technical support team if you have technical questions about this alloy.

Nominal Composition

Weight %
Nickel Balance
Chromium 20
Cobalt 10
Molybdenum 8.5
Titanium 2.1
Aluminum 1.5
Iron 1.5 max.
Manganese 0.3 max.
Silicon 0.15 max.
Carbon 0.06
Boron 0.005

Creep and Stress Rupture Strength

HAYNES® 282® alloy possesses exceptional creep strength in the temperature range 1200-1700°F (649-927°C). For example, it has superior strength to 263 alloy at all temperatures in this range in terms of both 1% creep and rupture. Despite the exceptional fabricability of 282® alloy, it compares well to less fabricable alloys developed for high creep strength. For example, its rupture strength is equivalent to the well-known, but less fabricable, Waspaloy alloy at the lower temperatures in this range and actually has a distinct advantage at the higher end of the temperature range. In terms of 1% creep strength, 282® alloy is superior to Waspaloy alloy across the entire temperature range. At temperatures of 1500-1700°F (816-927°C), 282® alloy has creep strength equivalent to even that of R-41 alloy, an alloy developed for excellent creep strength, but notorious for poor fabricability.

1% Creep Strength of Various Superalloys
in the Temperature Range 1500-1700°F (816-927°C)
(Sheet Products)

 

Comparative Creep-Rupture Properties of Gamma-Prime Strengthened Alloys* (Sheet)

Property Test Temperature 263 R-41 Waspaloy 282®
Stress-to-Produce 1% Creep in 100 h ksi (MPa) °F °C ksi MPa ksi MPa ksi MPa ksi MPa
1200 649 75 517 105 724 81 558
1300 704 54 372 75 517 63 434 72 496
1400 760 37 255 53 365 41 283 48 331
1500 816 22 152 32 221 25 172 32 221
1600 871 11 76 17 117 15 103 18 124
1700 927 6 41 8 55 6 41 9 62
Stress-to-Produce 1% Creep in 1000 h ksi (MPa) 1200 649 58 400 84 579 67 462 79 545
1300 704 41 283 59 407 46 317 53 365
1400 760 25 172 34 234 28 193 35 241
1500 816 12 83 18 124 16 110 21 145
1600 871 6 41 9 62 7 48 10 69
1700 927 3 21 5 34 3 21 5 34
Stress-to-Produce Rupture in 100 h ksi (MPa) 1200 649 77 531 110 758 92 634
1300 704 60 414 85 586 75 517 75 517
1400 760 42 290 63 434 53 365 56 386
1500 816 25 172 39 269 32 221 37 255
1600 871 14 97 23 159 19 131 22 152
1700 927 7 48 13 90 10 69 12 83
Stress-to-Produce Rupture in 1000 h ksi (MPa) 1200 649 64 441 90 621 80 552 80 552
1300 704 45 310 68 469 58 400 56 386
1400 760 28 193 43 296 36 248 38 262
1500 816 15 103 24 165 20 138 23 159
1600 871 7 48 13 90 7 48 12 83
1700 927 4 28 7 48 3 21 6 41

*Age-hardened (263 alloy: 1472°F (800°C)/8h/AC, Waspaloy alloy : 1825°F (996°C)/2h/AC + 1550°F (843°C)/4h/AC + 1400°F
(760°C)/16h/AC, R-41 alloy: 1650°F (899°C)/4h/AC, 282® alloy: 1850°F (1010°C)/2h/AC + 1450°F (788°C)/8h/AC)

Solution Annealed* + Age Hardened** 282® Sheet

Test Temperature Creep Approximate Initial Stress to Produce Specified Creep in:
100 h 1,000 h
°F °C % ksi MPa ksi MPa
1200 649 0.5 78 538
1 79 545
Rupture 80 552
1300 704 0.5 70 483 51 352
1 72 496 53 365
Rupture 75 517 56 386
1400 760 0.5 46 317 33 228
1 48 331 35 241
Rupture 56 386 38 262
1500 816 0.5 30 207 18 124
1 32 221 21 145
Rupture 37 225 23 159
1600 871 0.5 17 117 9.0 62
1 18 124 10 69
Rupture 22 152 12 83
1700 927 0.5 8.3 57 4.2 29
1 9.0 62 5.0 34
Rupture 12 83 6.0 41
1800 982 0.5 3.6 25
1 4.2 29 1.8 12
Rupture 5.5 38 2.5 17

*2100°F (1149°C)
**1850°F (1010°C)/2h/AC + 1450°F (788°C)/8h/AC

Solution Annealed* + Age Hardened** 282® Plate

Test Temperature Creep Approximate Initial Stress to Produce Specified Creep in:
100 h 1,000 h 10,000 h
°F °C % ksi MPa ksi MPa ksi MPa
1200 1200 0.5 81 558
1 82 565
Rupture 85 586 64 441
1300 704 0.5 73 503 53 365
1 75 517 55 379
Rupture 80 552 61 421 45 310
1400 760 0.5 49 338 35 241
1 50 345 36 248
Rupture 57 393 41 283 27 186
1500 816 0.5 32 221 20 138
1 34 234 22 152
Rupture 38 262 25 172 14 97
1600 871 0.5 18 124 11 76
1 19 131 12 83
Rupture 23 159 14 97 8 55
1700 927 0.5 9.4 65 4.8 33
1 10 69 5.2 36
Rupture 13 90 7.0 48 3.7 26
1800 982 0.5 4.2 29 1.8 12
1 4.6 32 2.0 14
Rupture 6.2 43 3.6 25

*2075°F (1135°C)
**1850°F (1010°C)/2h/AC + 1450°F (788°C)/8h/AC

Strain Age Cracking Resistance

Resistance to strain-age cracking is a major attribute of HAYNES® 282® alloy. As indicated in the chart below, 282® alloy approaches the well-known 263 alloy in this regard, and possesses much higher resistance to strain-age cracking than other nickel superalloys in its strength class (Waspaloy and R-41 alloys).

Resistance to Strain-Age Cracking as Measured by
the Controlled Heating-Rate Tensile (CHRT) Test

The CHRT test is an excellent measure of the resistance of gamma-prime strengthened superalloys to strain-age cracking. Samples of thickness 0.063” (1.6 mm), originally in the solution annealed condition, are heated to the test temperature at a rate of 25-30°F (14-17°C) per minute, this being representative of a typical post-weld heat treatment. Tests are performed for each alloy over a range of temperatures. The susceptibility to strain-age cracking is related to the minimum tensile elongation observed within that temperature range (the higher the minimum elongation, the greater is the resistance to strain-age cracking).

For further information regarding this test, please refer to:

  1. R.W. Fawley, M. Prager, J.B. Carlton, and G. Sines, WRC Bulletin No. 150, Welding Research Council, New York, 1970.
  2. M.D. Rowe, “Ranking the Resistance of Wrought Superalloys to Strain-Age Cracking”, Welding Journal, 85 (2), pp. 27-s to 34-s, 2006.

Tensile Properties

Solution-annealed and Age-hardened Sheet*

Temperature Yield Strength 0.2% Offset Ultimate Tensile Strength Elongation
°F °C ksi MPa ksi MPa %
RT RT 101.4 699 164.2 1132 30
1000 538 91.6 632 139.3 960 36
1200 649 91.5 631 145.7 1005 27
1300 704 90.5 624 136.5 941 24
1400 760 88.7 612 120.8 833 22
1500 816 82.3 567 100.3 692 24
1600 871 72.6 501 80.5 555 31
1700 927 43.9 303 50.2 346 37
1800 982 18.7 129 24.5 169 61

Solution-annealed and Age-hardened Plate*

Temperature Yield Strength 0.2% Offset Ultimate Tensile Strength Elongation Reduction of Area
°F °C ksi MPa ksi MPa % %
RT RT 103.7 715 166.4 1147 30 31
1000 538 94.1 649 143.8 991 34 36
1200 649 93.2 643 152.0 1048 31 31
1300 704 94.2 649 141.8 978 29 28
1400 760 91.1 628 124.2 856 22 24
1500 816 83.4 575 102.8 709 28 31
1600 871 73.6 507 82.1 566 31 42
1700 927 44.9 310 52.1 359 50 69
1800 982 19.1 132 25.3 174 71 91

*Solution Annealing: Sheet at 2100°F (1149°C), Plate at 2075°F (1135°C)
Age-Hardening: 1850°F (1010°C)/2h/AC + 1450°F (788°C)/8h/AC
RT= Room Temperature

Comparative Yield Strengths of Age-hardened* Sheet Material at Room Temperature and 1600°F (871°C)

At room temperature, HAYNES® 282® alloy has a higher yield strength than 263 alloy, but is not as strong as R-41 and Waspaloy alloys, which contain higher gamma-prime phase contents. However, at higher temperatures typical of gas turbine component applications, 282 alloy exhibits excellent yield strength, surpassing that of 263 and Waspaloy, and approaching that of the less fabricable R-41 alloy.

*Age-hardened (263 alloy: 1472°F (800°C)/8h/AC, Waspaloy alloy : 1825°F (996°C)/2h/AC + 1550°F (843°C)/4h/AC + 1400°F (760°C)/16h/AC, R-41 alloy: 1650°F (899°C)/4h/AC, 282® alloy: 1850°F (1010°C)/2h/AC + 1450°F (788°C)/8h/AC)

Hardness

Average Room Temperature Hardness of Mill Annealed HAYNES® 282® Alloy

Form Solution Annealed* Age-hardened**
HRBW HRC
Sheet 90 30
Plate 93 32
Bar 86 29

*Solution Annealing: Sheet at 2100°F (1149°C), Plate and Bar at 2075°F (1135°C)
**Age-hardening: 1850°F (1010°C)/2h/AC + 1450°F (788°C)/8h/AC
HRBW = Hardness Rockwell “B”, Tungsten Indentor.
HRC = Hardness Rockewll “C”.

Aging Kinetics

A key attribute of HAYNES® 282® alloy is its sluggish gamma-prime precipitation kinetics which are highly desirable for improved fabricability for two main reasons. One, the formation of gamma-prime during heat treatment is a key factor in strain age-cracking. Two, it allows sufficient time for the alloy to cool after solution annealing without formation of the gamma-prime phase which would reduce cold formability. The chart below indicates the increase in the room-temperature hardness (an indicator of the precipitation of the gamma-prime phase) with increasing aging time at 1500°F (816°C) for 282 alloy and several other gamma-prime strengthened alloys. 282 alloy was found to have a sluggish response, similar to the readily fabricable 263 alloy. The less fabricable R-41 and Waspaloy alloys hardened much more quickly.

Isothermal Hardening Kinetics
Temperature: 1500°F (816°C), Starting Material: Solution Annealed Sheet

 

Oxidation Resistance

Static Oxidation Testing

Environment: Flowing Air
Test Duration: 1,008 h
Number of Cycles: 6
Cycle Length: 168 h
Temperatures: 1600, 1700, 1800°F (871, 927, 982°C)
Metal Loss = (A-B)/2
Average Internal Penetration = C
Maximum Internal Penetration = D
Average Metal Affected = Metal Loss + Average Internal Penetration
Maximum Metal Affected = Metal Loss + Maximum Internal Penetration

Comparative Oxidation Resistance in Flowing Air, 1008 Hours

Alloy 1600°F (871°C) 1700°F (927°C) 1800°F (982°C)
Metal Loss Avg. Met. Aff. Metal Loss Avg. Met. Aff. Metal Loss Avg. Met. Aff.
mils μm mils μm mils μm mils μm mils μm mils μm
263 0.1 3 0.4 10 0.2 5 0.7 18 0.9 23 5.0 127
282® 0.2 5 0.6 15 0.1 3 1.1 28 0.2 5 1.8 46
R‐41 0.2 5 0.8 20 0.2 5 1.5 38 0.2 5 2.9 74
Waspaloy 0.3 8 1.4 36 0.3 8 3.4 86 0.7 18 5.0 127

Dynamic Oxidation Testing (Burner Rig)

Burner rig oxidation tests were conducted by exposing, in a rotating holder, samples 0.375 inch x 2.5 inches x thickness (9.5mm x 64mm x thickness) to the products of combustion of fuel oil (2 parts No. 1 and 1 part No. 2), burned at an air to fuel ratio of about 50:1. The gas velocity was about 0.3 mach. Samples were automatically removed from the gas stream every 30 minutes and fan cooled to less than 500°F (260°C) and then reinserted into the flame tunnel.

Alloy 1600°F (871°C), 1000 hours, 30 minute cycles 1800°F (982°C), 1000 hours, 30 minute cycles
Metal Loss, Avg. Met. Aff. Metal Loss, Avg. Met. Aff.
mils μm mils μm mils μm mils μm
263 1.4 36 4.0 102 12.5 318 16.1 409
282® 1.8 46 4.2 107 8.0 203 13.0 330
Waspaloy 1.9 48 4.3 109 9.5 241 13.6 345
R‐41 1.2 30 4.4 112 5.8 147 12.1 307

Thermal Stability

Comparative Thermal Stability Data of Gamma-Prime Strengthened Alloys (Sheet)

Room Temperature Tensile Data – Exposed* at 1200°F (649°C) for 1,000 hours

HAYNES® 282® alloy Thermal Stability Room Temperature Tensile Data – Exposed* at 1200°F (649°C) for 1,000 hours

Alloy 0.2% Yield Strength Ultimate Tensile Strength Elongation
ksi MPa ksi MPa %
263 113.6 783 166.6 1149 21.3
282® 112.9 778 172.8 1191 25.8
Waspaloy 136.5 941 196.2 1353 22.6
R-41 141.9 979 189.4 1306 8.9

Room Temperature Tensile Data – Exposed* at 1400°F (760°C) for 1,000 hours

Alloy 0.2% Yield Strength Ultimate Tensile Strength Elongation
ksi MPa ksi MPa %
263 92.7 639 160.3 1105 32.4
282® 104.1 718 170.5 1176 22.8
Waspaloy 112.9 779 182.4 1258 24.0
R-41 167.0 1151 197.2 1359 1.9

Room Temperature Tensile Data – Exposed* at 1500°F (816°C) for 1,000 hours

Alloy 0.2% Yield Strength Ultimate Tensile Strength Elongation
ksi MPa ksi MPa %
263 71.4 492 144.0 993 34.7
282® 91.9 634 159.8 1102 22.3
Waspaloy 103.5 714 170.1 1173 22.8
R-41 137.9 951 177.5 1224 1.8

Room Temperature Tensile Data – Exposed* at 1600°F (871°C) for 1,000 hours

Alloy 0.2% Yield Strength Ultimate Tensile Strength Elongation
ksi MPa ksi MPa %
263 55.0 379 125.2 863 40.9
282® 72.9 505 141.4 975 24.2
Waspaloy 84.6 584 149.3 1030 18.1
R-41 103.8 715 148.0 1021 2.6

*Thermal exposure was applied to samples in the age-hardened condition (263 alloy: 1472°F (800°C)/8h/AC, Waspaloy alloy : 1825°F (996°C)/2h/AC + 1550°F (843°C)/4h/AC + 1400°F (760°C)/16h/AC, R-41 alloy: 1650°F (899°C)/4h/AC, 282® alloy: 1850°F (1010°C)/2h/AC + 1450°F (788°C)/8h/AC)

Effect of Thermal Exposure on Yield Strength (At the Exposure Temperature)

Room Temperature Properties of HAYNES® 282® Plate after Thermal Exposure*

 

Exposure
Temperature
Duration 0.2% Offset
Yield Strength
Ultimate
Tensile Strength
 Elongation  Reduction
of Area
°F °C h ksi MPa ksi MPa % %
1200 649 0 102 705 167 1152 30 33
100 116 798 181 1247 27 31
1,000 118 814 181 1248 26 29
4,000 120 830 182 1255 26 29
8,000 119 819 183 1264 24 27
16,000 118 816 183 1260 23 25
1400 760 0 102 705 167 1152 30 33
100 110 759 177 1223 27 30
1,000 108 742 178 1226 26 29
4,000 103 707 175 1205 21 22
8,000 100 690 173 1191 20 21
16,000 96 658 168 1161 20 19
1600 871 0 102 705 167 1152 30 33
100 90 618 162 1114 31 36
1,000 77 533 155 1065 30 30
4,000 71 487 148 1022 32 31
8,000 69 473 146 1006 32 31
16,000 66 452 142 978 33 32

*Thermal exposure was applied to the samples in the age-hardened condition (1850ºF(1010ºC)/2h/AC+1450ºF(788ºC)/8h/AC)

Physical Properties

Physical Property* British Units Metric Units
Density (Solution Annealed)
0.299 lb/in3
8.27 g/cm3
Density (Age-Hardened)
0.300 lb/in3
8.29 g/cm3
Melting Range 2370-2510°F 1300-1375°C
Gamma-Prime Solvus 1827°F 997°C
Specific Heat RT 0.104 Btu/lb.°F RT 436 J/Kg.°C
200°F 0.110 Btu/lb.°F 100°C 463 J/Kg.°C
300°F 0.114 Btu/lb.°F 200°C 494 J/Kg.°C
400°F 0.118 Btu/lb.°F 300°C 522 J/Kg.°C
500°F 0.122 Btu/lb.°F 400°C 544 J/Kg.°C
600°F 0.125 Btu/lb.°F 500°C 563 J/Kg.°C
700°F 0.128 Btu/lb.°F 600°C 581 J/Kg.°C
800°F 0.131 Btu/lb.°F 700°C 594 J/Kg.°C
900°F 0.134 Btu/lb.°F 800°C 650 J/Kg.°C
1000°F 0.136 Btu/lb.°F 900°C 668 J/Kg.°C
1100°F 0.138 Btu/lb.°F 1000°C 676 J/Kg.°C
1200°F 0.140 Btu/lb.°F - -
1300°F 0.142 Btu/lb.°F - -
1400°F 0.150 Btu/lb.°F - -
1500°F 0.156 Btu/lb.°F - -
1600°F 0.158 Btu/lb.°F - -
1700°F 0.160 Btu/lb.°F - -
1800°F 0.161 Btu/lb.°F - -
Thermal Conductivity RT
72 Btu-in/ft2-hr.°F
RT 10.3 W/m.°C
200°F
82 Btu-in/ft2-hr.°F
100°C 12.0 W/m.°C
300°F
90 Btu-in/ft2-hr.°F
200°C 14.1 W/m.°C
400°F
99 Btu-in/ft2-hr.°F
300°C 16.3 W/m.°C
500°F
107 Btu-in/ft2-hr.°F
400°C 18.5 W/m.°C
600°F
116 Btu-in/ft2-hr.°F
500°C 20.5 W/m.°C
700°F
124 Btu-in/ft2-hr.°F
600°C 22.6 W/m.°C
800°F
132 Btu-in/ft2-hr.°F
700°C 24.8 W/m.°C
900°F
140 Btu-in/ft2-hr.°F
800°C 26.1 W/m.°C
1000°F
148 Btu-in/ft2-hr.°F
900°C 27.3 W/m.°C
1100°F
156 Btu-in/ft2-hr.°F
1000°C 28.9 W/m.°C
1200°F
164 Btu-in/ft2-hr.°F
- -
1300°F
173 Btu-in/ft2-hr.°F
- -
1400°F
177 Btu-in/ft2-hr.°F
- -
1500°F
182 Btu-in/ft2-hr.°F
- -
1600°F
187 Btu-in/ft2-hr.°F
- -
1700°F
192 Btu-in/ft2-hr.°F
- -
1800°F
199 Btu-in/ft2-hr.°F
- -
Thermal Diffusivity RT
0.112 ft2/h
RT
0.0288 cm2/s
200°F
0.121 ft2/h
100°C
0.0315 cm2/s
300°F
0.128 ft2/h
200°C
0.0348 cm2/s
400°F
0.135 ft2/h
300°C
0.0381 cm2/s
500°F
0.143 ft2/h
400°C
0.0413 cm2/s
600°F
0.150 ft2/h
500°C
0.0444 cm2/s
700°F
0.156 ft2/h
600°C
0.0473 cm2/s
800°F
0.163 ft2/h
700°C
0.0509 cm2/s
900°F
0.170 ft2/h
800°C
0.0488 cm2/s
1000°F
0.176 ft2/h
900°C
0.0498 cm2/s
1100°F
0.183 ft2/h
1000°C
0.0521 cm2/s
1200°F
0.190 ft2/h
- -
1300°F
0.197 ft2/h
- -
1400°F
0.192 ft2/h
- -
1500°F
0.190 ft2/h
- -
1600°F
0.192 ft2/h
- -
1700°F
0.195 ft2/h
- -
1800°F
0.200 ft2/h
- -
Electrical Resistivity RT 49.7 µohm.in RT 126.1 µohm.cm
200°F 50.3 µohm.in 100°C 127.8 µohm.cm
300°F 50.7 µohm.in 200°C 129.9 µohm.cm
400°F 51.2 µohm.in 300°C 131.8 µohm.cm
500°F 51.6 µohm.in 400°C 133.4 µohm.cm
600°F 52.0 µohm.in 500°C 135.0 µohm.cm
700°F 52.3 µohm.in 600°C 136.2 µohm.cm
800°F 52.7 µohm.in 700°C 135.5 µohm.cm
900°F 53.0 µohm.in 800°C 134.5 µohm.cm
1000°F 53.5 µohm.in 900°C 132.6 µohm.cm
1100°F 53.7 µohm.in 1000°C 129.9 µohm.cm
1200°F 53.4 µohm.in - -
1300°F 53.3 µohm.in - -
1400°F 53.1 µohm.in - -
1500°F 52.9 µohm.in - -
1600°F 52.5 µohm.in - -
1700°F 51.9 µohm.in - -
1800°F 51.3 µohm.in - -
Mean Coefficient of Thermal Expansion RT - RT -
200°F 6.7 µin/in.°F 100°C 12.1 µm/m.°C
300°F 6.8 µin/in.°F 200°C 12.4 µm/m.°C
400°F 6.9 µin/in.°F 300°C 12.8 µm/m.°C
500°F 7.0 µin/in.°F 400°C 13.1 µm/m.°C
600°F 7.1 µin/in.°F 500°C 13.5 µm/m.°C
700°F 7.2 µin/in.°F 600°C 13.7 µm/m.°C
800°F 7.3 µin/in.°F 700°C 14.2 µm/m.°C
900°F 7.5 µin/in.°F 800°C 14.9 µm/m.°C
1000°F 7.5 µin/in.°F 900°C 15.9 µm/m.°C
1100°F 7.6 µin/in.°F 1000°C 16.9 µm/m.°C
1200°F 7.8 µin/in.°F - -
1300°F 7.9 µin/in.°F - -
1400°F 8.1 µin/in.°F - -
1500°F 8.4 µin/in.°F - -
1600°F 8.7 µin/in.°F - -
1700°F 9.0 µin/in.°F - -
1800°F 9.3 µin/in.°F - -
Dynamic Modulus of Elasticity RT
31.5 x 106 psi
RT 217 GPa
200°F
31.0 x 106 psi
100°C 213 GPa
300°F
30.6 x 106 psi
200°C 209 GPa
400°F
30.2 x 106 psi
300°C 202 GPa
500°F
29.7 x 106 psi
400°C 196 GPa
600°F
29.2 x 106 psi
500°C 190 GPa
700°F
28.7 x 106 psi
600°C 183 GPa
800°F
28.2 x 106 psi
700°C 175 GPa
900°F
27.7 x 106 psi
800°C 166 GPa
1000°F
27.2 x 106 psi
900°C 154 GPa
1100°F
26.6 x 106 psi
1000°C 140 GPa
1200°F
26.0 x 106 psi
- -
1300°F
25.4 x 106 psi
- -
1400°F
24.7 x 106 psi
- -
1500°F
23.8 x 106 psi
- -
1600°F
22.9 x 106 psi
- -
1700°F
21.7 x 106 psi
- -
1800°F
20.6 x 106 psi
- -
Dynamic Shear Modulus RT
11.9 x 106 psi
RT 82 GPa
200°F
11.7 x 106 psi
100°C 80 GPa
300°F
11.5 x 106 psi
200°C 78 GPa
400°F
11.3 x 106 psi
300°C 76 GPa
500°F
11.1 x 106 psi
400°C 73 GPa
600°F
10.9 x 106 psi
500°C 71 GPa
700°F
10.7 x 106 psi
600°C 68 GPa
800°F
10.6 x 106 psi
700°C 65 GPa
900°F
10.4 x 106 psi
800°C 61 GPa
1000°F
10.1 x 106 psi
900°C 57 GPa
1100°F
9.9 x 106 psi
1000°C 51 GPa
1200°F
9.7 x 106 psi
- -
1300°F
9.4 x 106 psi
- -
1400°F
9.1 x 106 psi
- -
1500°F
8.8 x 106 psi
- -
1600°F
8.4 x 106 psi
- -
1700°F
8.0 x 106 psi
- -
1800°F
7.6 x 106 psi
- -
Poisson’s Ratio RT 0.319 RT 0.319
200°F 0.325 100°C 0.326
300°F 0.330 200°C 0.335
400°F 0.335 300°C 0.335
500°F 0.335 400°C 0.337
600°F 0.335 500°C 0.341
700°F 0.337 600°C 0.346
800°F 0.338 700°C 0.352
900°F 0.340 800°C 0.355
1000°F 0.342 900°C 0.357
1100°F 0.346 1000°C 0.363
1200°F 0.350 - -
1300°F 0.353 - -
1400°F 0.355 - -
1500°F 0.355 - -
1600°F 0.355 - -
1700°F 0.359 - -
1800°F 0.363 - -

*Age-hardened 1850°F/2h/AC + 1450°F/8h/AC
RT= Room Temperature

Coefficient of Thermal Expansion of Gamma-Prime Strengthened Alloys* (Sheet)

Low Cycle Fatigue

Low-Cycle Fatigue Data – HAYNES® 282® Sheet* (Thickness 0.125”, 3.2 mm)

*Age-hardened at 1850ºF(1010ºC)/2h/AC + 1450ºF(788ºC)/8h/AC

Comparative Low-Cycle Fatigue Data

Welding

As a result of its high resistance to strain-age cracking, HAYNES® 282® alloy is much more weldable than other alloys of similar strength. The preferred welding processes are gas tungsten arc (GTAW or TIG) and gas metal arc (GMAW or MIG), using 282 alloy bare filler wire. If shielded metal arc welding (SMAW) of HAYNES® 282® alloy is necessary, please contact the technical support group at Haynes International for information on the most appropriate coated electrode. Submerged arc welding (SAW) of HAYNES® 282® alloy is not recommended due to the high heat input and increased weld restraint associated with this process.

Filler Metal Selection

It is recommended that bare, filler metal of a matching composition be used to join HAYNES 282 alloy to itself, using either the GTAW or GMAW process. HAYNES® 282® alloy filler metal can also be used for dissimilar joining, and/or repair welding, of other age-hardenable, nickel superalloys. Please click here or see the Haynes Welding SmartGuide for more information.

Base Metal Preparation

HAYNES® 282® alloy should be welded in the solution-annealed condition, before it is subjected to the age-hardening treatment. The joint surface and adjacent areas should be thoroughly cleaned, to reveal bright, metallic surfaces, before welding. All grease, oil, crayon marks, sulfur compounds, and other foreign matter should be removed.

Preheating, Interpass Temperatures, and Postweld Heat Treatment

Preheating of HAYNES® 282® alloy is not required, as long as the base metal to be welded is above 32°F (0°C). Interpass temperatures should be less than 200°F (93°C). Auxiliary cooling methods may be used between weld passes, provided that these do not introduce contaminants.

After welding, HAYNES® 282® alloy will normally be subjected to its age-hardening treatment, which comprises 2 hours at 1850°F (1010°C), air cool + 8 hours at 1450°F (788°C), air cool. The heat up rate to 1850°F should be as fast as possible, within the capability of the furnace being used.

The use of a full solution anneal (typically at 2075°F/1135°C) after welding and prior to the two step age-hardening treatment is neither required nor prohibited. For heavy section weldments, or complex weldments with high residual stress, a full solution anneal prior to the age-hardening treatment may be advisable.

NOTE: For information regarding ASME Advanced – Ultra Super Critical (A-USC) applications, please contact Vinay Deodeshmukh (765-456-6212; [email protected]).

Nominal Welding Parameters* (Sheet)

These are provided as a guide for performing typical operations and are based upon the welding conditions used in the laboratories of Haynes International. For further information, please contact the technical support group.

Manual Gas Tungsten Arc Welding V-Groove or U-Groove – All thicknesses 0.125” (3.2 mm) or greater
Technique Stringer Bead
Current (DCEN), amperes 150-250
Voltage, volts 11-14
Filler Metal 0.125” (3.2 mm) diameter 282®alloy
Travel Speed, in/min (mm/min 4-6 (102-152)
Electrode Size – EWTH-2, in (mm) 0.125” (3.2 mm) diameter
Electrode Shape 30° included
Cup Size #8 or larger
Gas Type Argon
Shielding Gas Flow, CFH (l/min) 30-35 (14.2-16.5)
Backing Gas Flow, CFH (l/min) 10 (4.7) for root pass
Preheat Ambient
Maximum Interpass Temperature, °F (°C) 200 (93)
Automatic Gas Tungsten Arc Welding Square Butt Joint – No filler metal added – Material thickness 0.125” (3.2 mm)
Current (DCEN), amperes 275
Voltage, volts 9.5
Travel Speed, in/min (mm/min) 12 (305)
Electrode Size – EWTH-2, in (mm) 0.125 (3.2) diameter
Electrode Shape 45° included
Cup Size #8
Shielding Gas Flow, CFH (l/min) 30 (14.2)
Shielding Gas Type Argon
Backing Gas Flow, CFH (l/min) 10 (4.7)
Backing Gas Type Argon
Gas Metal Arc Welding Synergic Mode – All thicknesses 0.09” (2.3 mm) or greater
Wire Type HAYNES®282®alloy
Wire Diameter, in (mm) 0.045 (1.1)
Feed Speed, ipm (m/min) 170-190 (4.3-4.8)
Current (DCEP), amperes 175
Voltage, volts 28-32
Stickout, in (mm) 0.5-0.75 (12.7-19.1)
Travel Speed, ipm (mm/min) 9-13 (230-330)
Torch Gas Flow, CFH (l/min) 40 (18.9)
Gas Type 75% Argon + 25% Helium

Mechanical Properties of HAYNES® 282® Welds

Welded Transverse Tensile Data* For 0.125″ (3.2 mm) Sheet
0.125″ (3.2 mm) Sheet Autogenously Welded, then with one Cover Pass
Cover Pass – .125″ (3.2 mm) Diameter Wire

Condition Temperature 0.2% Yield Strength Ultimate Tensile Strength Fracture Location
°F °C ksi MPa ksi MPa
As Welded RT RT 64.7 446 125.4 865 Weld Weld
As Welded/Aged** RT RT 106.3 733 168.2 1160 Base Weld
As Welded/Solution Annealed** RT RT 66.9 461 126.8 874 Base Base
As Welded/Solution Annealed**/Aged*** RT RT 98.5 679 152.1 1049 Base Base
1000 538 83.7 577 132.0 910 Base Base
1200 649 86.1 594 135.1 932 Base Weld
1400 760 83.7 577 120.3 829 Base Base
1600 871 70.9 489 77.1 532 Base Base
1800 982 19.1 132 24.7 170 Base Weld

RT = Room Temperature

GTAW Welded Transverse Tensile Data* For .5″ (12.7 mm) Plate
0.5″ (12.7 mm) Plate GTAW Welded
with .125″ (3.2 mm) Diameter Wire

Condition Temperature 0.2% Yield Strength Ultimate Tensile Strength Fracture Location
°F °C ksi MPa ksi MPa
As Welded RT RT 75.9 523 130.8 902 Weld Base
As Welded/Aged** RT RT 120.5 831 165.8 1143 Weld Weld
As Welded/Solution Annealed** RT RT 77.2 532 139.5 962 Weld Weld
As Welded/Solution Annealed**/Aged*** RT RT 94.3 650 146.1 1007 Weld Weld
1000 538 85.4 589 134.3 926 Weld Weld
1200 649 86.6 597 137.0 945 Base Base
1400 760 85.3 588 125.7 867 Base Base
1600 871 71.9 496 83.4 575 Weld Weld
1800 982 20.1 139 26.3 181 Weld Weld

GMAW Welded Transverse Tensile Data* For .5″ (12.7 mm) Plate
0.5″ (12.7 mm) Plate GMAW Welded
with 0.045″ (1.1 mm) Diameter Wire

Condition Temperature 0.2% Yield Strength Ultimate Tensile Strength Fracture Location
°F °C ksi MPa ksi MPa
As Welded RT RT 77.9 537 130.4 899 Base Base
As Welded/Aged** RT RT 117.5 810 162.4 1120 Weld Weld
As Welded/Solution Annealed** RT RT 78.6 542 141.7 977 Base Base
As Welded/Solution Annealed**/Aged*** RT RT 94.4 651 155.8 1074 Base Base
1000 538 83.8 578 132.0 910 Weld Weld
1200 649 85.2 587 137.3 947 Weld Weld
1400 760 83.7 577 123.6 852 Base Base
1600 871 71.0 490 82.0 565 Weld Weld
1800 982 19.8 137 26.8 185 Weld Weld

All Weld Metal Tensile Data*
0.5″ (12.7 mm) Cruciform GMAW Welded
with 0.045″ (1.1 mm) Diameter Wire

Condition Temperature 0.2% Yield Strength Ultimate Tensile Strength Fracture Location
°F °C ksi MPa ksi MPa
As Welded RT RT 85.0 586 124.7 860 40.0 43.8
As Welded/Aged** RT RT 105.4 727 151.6 1045 20.3 22.4
As Welded/Solution Annealed** RT RT 81.2 560 132.4 913 40.1 45.5
As Welded/Solution Annealed**/Aged*** RT RT 100.9 696 149.3 1029 22.7 20.0

*Average of two tests
** 2075°F (1135°C)/30 min/AC
***1850°F (1010°C)/2 h/AC + 1450°F (788°C)/8 h/AC

Comparative Creep-Rupture Properties of Weld Metal to Base Metal

Temperature Stress Material Time to 1% Creep Time to Rupture
°F °C ksi MPa h h
1400 760 50 345 Base Metal* 96.8 237.5
All Weld Metal** 197.0 364.8
1700 927 7 48 Base Metal* 335.6 792.3
All Weld Metal** 648.0 950.5

*Annealed + Age-Hardened **GMAW Welded + Annealed + Age-Hardened

Heat Treatment and Fabrication

Heat Treatment

Wrought HAYNES® 282® alloy is furnished in the solution annealed condition unless otherwise specified. After component fabrication, the alloy would normally again be solution annealed at 2050 to 2100°F (1121 to 1149°C) for a time commensurate with section thickness and rapidly cooled or water-quenched for optimal properties. Following solution annealing, the alloy is given a two-step age-hardening treatment to optimize the microstructure and induce age-hardening. The first step is 1850°F (1010°C) for 2 hours followed by rapid or air cooling. The second step is 1450°F (788°C) for 8 hours followed by air cooling.

NOTE: The heat treatment for Advanced Ultra-Supercritical (A-USC), Supercritical CO2, and Other ASME Boiler Code Applications is different from the standard heat treatment.  For information regarding the heat treatment for ASME code related applications, please click here.

Hot and Cold Working

HAYNES® 282® alloy has excellent forming characteristics. It may be hot-worked at temperatures in the range of about 1750-2150°F (955-1177°C) provided the entire piece is soaked for a time sufficient to bring it uniformly to temperature. Initial breakdown is normally performed at the higher end of the range, while finishing is usually done at the lower temperatures to afford grain refinement.

As a consequence of its good ductility, 282® alloy is also readily formed by cold-working. Intermediate annealing may be performed at 2050 to 2100°F (1121 to 1149°C) for a time commensurate with section thickness and rapidly cooled or water-quenched, to ensure maximum formability. All hot- or cold-worked parts should normally be annealed prior to age-hardening (as described in the “Heat Treatment” section) in order to develop the best balance of properties.

Cold Forming Characteristics

Average Room-Temperature Hardness and Tensile Properties of
Solution Annealed HAYNES® 282® alloy

Form Hardness 0.2% Yield Strength Ultimate Tensile Strength Elongation Reduction of Area
HRB ksi MPa ksi MPa % %
Sheet 90 56 384 122 839 59
Plate 93 56 384 120 830 60 61
Bar 86 51 348 118 816 62 69

Hardness vs. Cold Work (Sheet)

Alloy 0% 10% 20% 30% 40% 50%
282® 93 HRB 26 HRC 33 HRC 38 HRC 41 HRC 43 HRC
R-41 96 HRB 30 HRC 36 HRC 39 HRC 41 HRC 42 HRC
Waspaloy 94 HRB 26 HRC 32 HRC 37 HRC 39 HRC 41 HRC
263 89 HRB 19 HRC 27 HRC 33 HRC 37 HRC 39 HRC
625 97 HRB 32 HRC 37 HRC 40 HRC 42 HRC 45 HRC

Effect of Cold Reduction on Room-Temperature Tensile Properties*

Cold Reduction 0.2% Yield Strength Ultimate Tensile Strength Elongation
% ksi MPa ksi MPa %
0 55.5 383 121.0 834 58.0
10 87.8 605 131.8 909 46.7
20 114.5 790 144.9 999 31.5
30 139.7 963 165.4 1141 15.5
40 158.5 1093 184.2 1270 8.9
50 174.7 1204 200.4 1382 6.6
60 190.4 1312 215.4 1485 5.6

*Based upon rolling reductions taken upon a solution annealed 0.125” (3.2 mm) thick sheet
HRB = Hardness Rockwell “B”.
HRC = Hardness Rockwell “C”.

Hardness of Solution Annealed Sheet Versus % Cold Work

Machining

HAYNES® 282® alloy has similar machining characteristics to other nickel alloys used at high temperatures. Rough machining should be carried out prior to age-hardening. Final machining or finish grinding may be done after age-hardening. Machining guidelines can be found in the Welding and Fabrication section of this website.  If further information is required, please contact the technical support group at Haynes International

Applications

HAYNES® 282® alloy is designed for applications in engines for aircraft.

HAYNES® 282® alloy is designed for the transition sections and other hot-gas-path components in land-based gas turbines.

Recent Data Study

The recently published Department of Energy technical paper supplements HAYNES® 282® alloy ASME code case data with an in-depth technical analysis of creep life.

Key points:

  • HAYNES® 282® alloy code case announcement.
    • The alloy is approved for use in modern power generation equipment utilizing supercritical carbon dioxide and advanced ultra-supercritical steam technologies.
  • The DoE publication, found here, presents an in-depth study of the effects of time, temperature, stress, and grain size on predicted service life of HAYNES® 282® alloy.
  • The publication explores the predicted applied stress to allow for at least 100,000 hours of service life (approximately eleven years and five months) using the Larson Miller and Wilshire creep life modelling approaches.
  • Excerpts from the paper state:
    • “…Experimental creep-rupture data generated for an ASME International code case for wrought [HAYNES® 282® alloy were analyzed] with the aim of developing expressions for creep-limited lifetime as a function of applied stress and temperature.”
    • “The models were used to calculate the applied stresses at which HAYNES® 282® alloy would achieve 100,000-h creep lifetimes as a function of temperature between 600 and 950 ◦C, …”
    • “Lifetime predictions based on these derived expressions adequately described other experimental datasets for HAYNES® 282® alloy.”

Please contact Brett Tossey for more information at 765-456-6098 or [email protected] .

Specifications and Codes

Specifications

HAYNES® 282® alloy (N07208)
Sheet, Plate & Strip AMS 5951
Billet, Rod & Bar B 637AMS 5915
Coated Electrodes
Bare Welding Rods & Wire
Seamless Pipe & Tube
Welded Pipe & Tube
Fittings
Forgings B 637AMS 5915
DIN
Others

Codes

HAYNES® 282® alloy
(N07208)
ASME Section l
Section lll Class 1
Class 2
Class 3
Section Vlll Div. 1
Div. 2
Section Xll
B16.5
B16.34
B31.1
B31.3
MMPDS 6.3.11

1ASME Code Case 3024: Plate, Sheet, Strip, Bar, Fittings, Forgings, Forgings Stock, Seamless Pipe/Tube, Welded Pipe/Tube
2ASME B31 Case 219: Plate, Sheet, Strip, Bar, Fittings, Forgings, Forgings Stock, Seamless Pipe/Tube, Welded Pipe/Tube.

Disclaimer

Haynes International makes all reasonable efforts to ensure the accuracy and correctness of the data displayed on this site but makes no representations or warranties as to the data’s accuracy, correctness or reliability. All data are for general information only and not for providing design advice. Alloy properties disclosed here are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature and, as such, are indicative only of the results of such tests and should not be considered guaranteed maximums or minimums.  It is the responsibility of the user to test specific alloys under actual service conditions to determine their suitability for a particular purpose.

For specific concentrations of elements present in a particular product and a discussion of the potential health affects thereof, refer to the Safety Data Sheets supplied by Haynes International, Inc.  All trademarks are owned by Haynes International, Inc., unless otherwise indicated.

Alloy Brochure

Download