HAYNES® 233®

Principal Features

HAYNES® 233® alloy is a new Ni-Co-Cr-Mo-Al alloy that offers excellent oxidation resistance at temperatures to 2100°F (1149°C) or higher, depending on application, coupled with superior creep strength – a combination of properties never before achieved in a readily fabricable alloy. The alloy obtains its exceptional oxidation resistance through the formation of a protective alumina layer, while the high creep strength is a result of solid-solution and carbide strengthening. Additionally, for use at low to intermediate temperature applications (below the gamma-prime solvus of 1767°F (964°C)) the alloy can be age-hardened by heat treatment to produce even greater strength. Finally, the alloy can be readily fabricated using conventional methods since it exhibits good hot workability, cold formability, and weldability. Potential applications include hot gas path components in aerospace and industrial gas turbines, industrial heating fixtures and sensors, various structural components in the emerging energy and chemical process markets.

For additional information about HAYNES® 233® alloy, please contact Victor Paramo at 765-456-6226 or [email protected].

*Please contact our technical support team if you have technical questions about this alloy.

Heat Treatment

HAYNES® 233® alloy is supplied in the mill (solution) annealed condition and may be used in either the solution annealed or age-hardened condition, depending on application. Solution annealing is typically performed by heating to a temperature in the range of 2100 to 2150°F (1149 to 1177°C) for a time commensurate with thickness, followed by a water quench. The solution annealed condition is most appropriate for applications above 1767°F (964°C). 233® alloy can be age-hardened to significantly increase strength at low to intermediate temperatures (below the gamma-prime solvus of 1767°F (964°C)). A typical age-hardening heat treatment for this alloy is 1650°F/4h/AC + 1450°F/8h/AC (899°C/4h/AC + 788°C/8h/AC).

As the heat treatment has a significant impact on properties at various temperatures, the properties in this brochure are clearly segregated by condition.

Nominal Composition

Weight %
Nickel 48 (Balance)
Chromium 19
Cobalt 19
Molybdenum 7.5
Titanium 0.5
Aluminum 3.3
Iron 1.5 max.
Manganese 0.4 max.
Silicon 0.20 max.
Carbon 0.1
Boron 0.004
Tantalum 0.5
Tungsten 0.3 max.
Yttrium 0.025 max.
Zirconium 0.03

Solution Annealed

The solution annealed condition is most appropriate for applications above 1767°F (964°C), to 2100°F (1149°C) or higher, depending on application. When used in the solution annealed condition at temperatures below 1767°F (964°C), gamma-prime will precipitate and this should be taken into account for such applications.

Properties of HAYNES® 233® alloy in the solution annealed condition are shown on the following pages.

Oxidation Resistance – Solution Annealed

HAYNES®233®alloy in the solution annealed condition exhibits superior oxidation resistance at temperatures of 1800°F and above, under a variety of test conditions and environments, including flowing air and combustion gases. It is in league with HAYNES®214®alloy, both of which far outperform other alloys currently in the market.

Static Oxidation Resistance at 2100˚F (1149˚C)

2100°F (1149°C) in Air for 1,008 h – Cycled Weekly

 

Static Oxidation – Solution Annealed

Alloy Comparative Oxidation Resistance in Flowing Air, 1008 Hours*
1800°F (982°C) 2100°F (1149°C)
Metal Loss Average Metal Affected Metal Loss Average Metal Affected
mils µm mils µm mils µm mils µm
233® 0.1 1 0.3 8 0.3 7 0.5 12
214® 0.1 3 0.4 9 0.1 3 0.5 13
230® 0.1 3 1.0 25 1.2 30 4.4 112
617 0.2 5 0.7 18 1.0 25 5.2 132
X 0.3 8 1.4 36 3.6 91 6.1 115
188 0.1 3 1.0 25 8.6 218 10.7 272
625 0.3 8 1.5 38 1.9 48 20.2 513
263 0.8 20 4.3 109 - - - -
Waspaloy 0.5 13 5.0 127 - - - -

*Average Metal Affected = Metal Loss + Internal Attack

Long Term Oxidation – Solution Annealed

High‐temperature sheet (0.060 ‐ 0.125”) alloys exposed for 360 days (8,640 h) in flowing air.

*Tests discontinued after 500h exposure due to breakaway oxidation

Alloy 2000°F
Metal Loss Average Metal Affected
mils µm mils µm
233® 0.2 5 1.3 33
617 7.1 180 12.4 315
230® 7.7 196 16.0 406
*625 19.0 483 22.1 561
*188 21.8 554 25.1 638
* The results were obtained after eight cycles (240 days or 5,760 hours)

Dynamic Oxidation – Solution Annealed

Alloy 1800°F (980°C), 1000 h, 30-min cycles 2000°F (1090°C), 500 h, 30-min cycles
Metal Loss Average Metal Affected Metal Loss Average Metal Affected
mils µm mils µm mils µm mils µm
233® 0.7 19 1.3 35 0.7 17 1.2 30
214® 1.2 30 1.7 43 1.2 30 1.5 38
188 1.0 25 2.7 69 10.9 277 13.1 333
230® 2.2 56 4.7 119 7.1 180 9.9 251
617 2.5 64 5.0 127 13.3 338 20.9 531
625 3.7 94 6.0 152 Sample Consumed
X 4.3 109 7.3 185 11.6 295 14.0 356

Burner rig oxidation tests were conducted by exposing samples of 3/8in x 2.5in x thickness (9mm x 64 mm x thickness), in a rotating holder to the products of combustion of 2 parts No. 1 and 1 part No. 2 fuel burned at a ratio of air to fuel of about 50:1. Gas velocity was about 0.3 mach. Samples were automatically removed from the gas stream every 30 minutes and fan-cooled to near ambient temperature and then reinserted into the flame tunnel.

Cyclic Oxidation – Solution Annealed

Alloy 2000°F (1090°C), 1000 h, 1h cycles
Metal Loss Average Metal
mils µm mils µm
214® 0.2 4 0.6 14
233® 0.4 10 1.1 28
230® 2.0 51 3.1 80
617 8.5 217 10.3 262
188 11.7 297 13.2 336
X* 10.9 277 12.7 323
625 23.1 587 24.3 617
*Tests discontinued after 500h and 500 cycles; samples showed breakaway oxidation (loss of oxidation protection) before 500h/500 cycles

*Tests discontinued after 500h exposure due to breakaway oxidation

Nitridation Resistance – Solution Annealed

Nitridation test was performed in flowing ultra-high purity (UHP) nitrogen gas at 1600°F (871°C) and 1800°F (982°C) for 1,008 hours, cycled every 168 hours. Nitrogen absorption was determined by chemical analysis of samples before and after exposure.

HAYNES® 233® alloy Nitridation Resistance - Solution Annealed

Alloy 1600°F (871°C) 1800°F (982°C)
Nitrogen absorption Average Internal Penetration Nitrogen absorption Average Internal Penetration
mg/cm2
mils µm
mg/cm2
mils µm
214® 0.1 0 0 0.1 0 0
233® 0.1 0.5* 12* 0.3 7.6* 193*
188 0.2 2.1 53 3.3 15.3 389
230® 0.4 2.3 58 4 12.3 312
625 0.4 3.6 92 7 17.7 450
617 0.6 2.4 61 7.2 30.1 765

*Local internal penetration

Water Vapor Resistance – Solution Annealed

1800°F (982°C) Water Vapor Oxidation Test (1008h cycled every 168h)

HAYNES® 233® alloy Water Vapor - Solution Annealed

Alloy
in air+10% H2O
in air+20% H2O
Meta Loss Average Metal Affected Meta Loss Average Metal Affected
mils µm mils µm mils µm mils µm
233® <0.1 1 0.4 10 <0.1 1 0.4 10
214® <0.1 1 0.9 23 <0.1 1 0.6 15
230® 0.2 5 1.3 33 0.2 5 1.5 38
625 0.2 5 1.5 38 0.4 10 1.6 41
188 0.1 3 1.6 41 0.5 5 1.5 38
X 0.3 7 1.7 43 0.3 7 4.6 41
HR-120® 0.4 10 1.7 43 0.4 10 2.1 86
800HT - - - - 2.5 63 5.1 129

Carburization Resistance – Solution Annealed

1600°F (871°C) carburization test for 96h cycled every 24h in Ar-5H2-2C3H6.

HAYNES® 233® alloy Carburization Resistance – Solution Annealed

Alloys Carbon Absorption Average Internal Penetration
mg/cm2
mils µm
214® 0.5 < 0.1 2
233® 0.6 1.9 47
230® 2.3 11.8 300
617 3.5 16.9 429
188 3.7 12.1 307
800HT 4.0 24.9 633
625 4.3 8.6 218

Creep and Rupture Properties – Solution Annealed

HAYNES® 233® alloy in the solution annealed condition exhibits excellent creep strength and rupture life at temperatures up to 2100°F.  Compared to other solid-solution-strengthened alloys, it is one of the top performers, especially at the upper end of the 1800°F – 2100°F temperature range.

Comparison of Sheet Materials: Stress to Produce 1% Creep in 1000 Hours

233® Sheet Creep and Stress Rupture Strength – Solution Annealed

Test Temperature Creep Approximate Initial Stress to Produce Specified Creep in:
100 hr 1,000 hr 10,000 hr
% ksi MPa ksi MPa ksi MPa
1700 927 0.5 6.2 43 3.3 23 1.6* 11*
1 7.0 49 3.8 26 1.9* 13*
R 9.3 64 5.0 35 2.9* 20*
1800 982 0.5 3.2 22 1.5 10 0.54* 3.7*
1 3.7 26 1.8 13 0.76* 5.2*
R 4.9 34 2.8 19 1.7* 11*
1900 1038 0.5 1.5 11 0.53 3.6 0.13 0.9
1 1.9 13 0.75 5.2 0.22 1.5
R 2.8 20 1.6 11 0.96 6.6
2000 1093 0.5 0.57 3.9 0.13 0.9 - -
1 0.80 5.5 0.23 1.6 - -
R 1.7 12 0.97 6.7 0.55 3.8
2100 1149 0.5 0.16 1.1 - - - -
1 0.27 1.9 - - - -
R 1.03 7.1 0.57 3.9 0.30* 2.1*

*Significant Extrapolation
Preliminary creep table based on available data
All creep data are preliminary

Low Cycle Fatigue – Solution Annealed

Comparative LCF: 233® vs 230® alloy [0.125 in. (3.2mm) Sheet]

Tensile Properties – Solution Annealed

Tensile Properties of HAYNES® 233® Plate, Solution Annealed

Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation Reduction of Area
°F °C ksi MPa ksi MPa % %
1800 982 12.2 84 18.1 125 118.4 96.3
2000 1093 6.1 42 9.2 63 101.3 93
2100 1149 3.5 24 6.1 42 151.4 96.1

Tensile Properties of HAYNES® 233® Sheet, Solution Annealed

Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation
°F °C ksi MPa ksi MPa %
1800 982 12.3 85 17.7 122 92.1
2000 1093 6.5 45 8.8 61 61.8
2100 1149 3.9 27 6.1 42 71.9

Comparative Tensile Properties of HAYNES Solid Solution Strengthened Alloys (Solution Annealed Sheet)

Alloy 1800°F (982°C) 2000°F (1093°C)
0.2% Yield Strength  Ultimate Tensile Strength  Elongation 0.2% Yield Strength  Ultimate Tensile Strength  Elongation
ksi MPa ksi MPa % ksi MPa ksi MPa %
230® 17.8 123 24.5 169 54.1 10.0 69 13.1 90 37.0
617 13.2 91 19.6 135 111.4 6.4 44 9.7 67 92.2
233® 12.3 85 17.7 122 92.1 6.5 45 8.8 61 61.0
214® 6.0 41 9.8 68 144.8 3.0 20 5.5 38 157.1

Thermal Stability – Solution Annealed

Thermal Stability of Solution Annealed 233® Sheet

Initial Condition Exposure Temperature Exposure Duration Test Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation
°F °C h °F °C ksi MPa ksi MPa %
SA - - - RT RT 52.5 362 118.6 818 57.3
SA - - - 1800 982 12.1 84 16.3 112 99.3
SA 1800 982 8000 RT RT 49.1 339 116.8 806 46.2
SA 1800 982 8000 `1800 982 10.7 74 15.3 105 102.8

SA= Solution Annealed

Welded Tensile Properties – Solution Annealed

HAYNES® 233® alloy can be readily welded using both Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW) processes, with 233-W® alloy recommended as filler metal.  Transverse weld tensile properties of 233® alloy sheet and plate welded with 233-W® alloy filler metal are similar or higher than that of 233® alloy sheet and plate. For more information on 233-W® alloy filler metal, please see the 233-W® Alloy At A Glance datasheet here.

Welded Transverse Tensile Data – HAYNES® 233® Sheet – 0.125” (3.2 mm)(Sheet)

Solution Annealed Prior to Autogenous GTAW

Temperature 0.2% YS UTS 4D Elong. Failure Location
°F °C ksi MPa ksi MPa %
GTAW As-Welded
RT RT 66.8 461 125.3 864 43.5 Weld Metal, Base Metal
1800 982 14.5 100 17.9 123 45.6 Base Metal
GTAW + 2150°F (1177°C) /15 min/WQ
RT RT 53 365 112.6 776 36 Base Metal
1800 982 13.5 93 18.3 126 48.3 Base Metal

Solution Annealed Prior to GMAW-P Welded – Using 233-W® Filler Metal

Temperature 0.2% Yield Strength Ultimate Tensile Strength 4D Elongation Reduction of Area Failure Location
°F °C ksi MPa ksi MPa % %
GMAW-P As-Welded
RT RT 96.3 664 139.3 960 25.6 34.2 Weld Metal
1800 982 15.2 105 19.7 136 43.9 44.5 Weld Metal

Physical Properties – Solution Annealed

Physical Property Customary Units Metric Units
Density
0.295 lb/in3
8.17 g/cm3
Melting Range 2422 - 2532°F 1328 - 1389°C
Specific Heat RT 0.106 BTU/lb-°F RT 442 J/kg-°C
1800°F 0.139 BTU/lb-°F 900°C 575 J/kg-°C
2000°F 0.142 BTU/lb-°F 1000°C 584 J/kg-°C
Thermal Conductivity RT

68 BTU-in/ft2-hr-°F

RT 10.0 W/m-°C
1800°F

157 BTU-in/ft2-hr-°F

900°C 21.7 W/m-°C
2000°F

166 BTU-in/ft2-hr-°F

1000°C 22.9 W/m-°C
Thermal Diffusivity RT

0.106 ft2/h

RT
0.0274 cm2/s
1800°F

0.185 ft2/h

900°C
0.0481 cm2/s
2000°F

0.193 ft2/h

1000°C
0.0501 cm2/s
Electrical Resistivity RT 50.2 microhms-in RT 127 microhms-cm
1800°F 51.3 microhms-in 900°C 133 microhms-cm
2000°F 51.5 microhms-in 1000°C 130 microhms-cm
Mean Coefficient of Thermal Expansion 1800°F 9.7 µin/in-°F 900°C 16.6 µm/m-°C
2000°F 10.0 µin/in-°F 1000°C 17.6 µm/m-°C
Dynamic Modulus of Elasticity RT
31.7 x 106 psi
RT 219 GPa
1700°F
20.8 x 106 psi
900°C 147 GPa
1800°F
19.8 x 106 psi
1000°C 135 GPa
1900°F
18.8 x 106 psi
1050°C 128 GPa
2000°F
17.8 x 106 psi
1100°C 122 GPa
2100°F
16.7 x 106 psi
1150°C 115 GPa
2200°F
15.7 x 106 psi
1200°C 108 GPa
Dynamic Shear Modulus RT
11.8 x 106 psi
RT 82 GPa
1700°F
7.7 x 106 psi
900°C 54 GPa
1800°F
7.3 x 106 psi
1000°C 49 GPa
1900°F
6.9 x 106 psi
1050°C 47 GPa
2000°F
6.5 x 106 psi
1100°C 45 GPa
2100°F
6.2 x 106 psi
1150°C 42 GPa
2200°F
5.8 x 106 psi
1200°C 40 GPa
Poisson's Ratio RT 0.34 RT 0.34
1700°F 0.36 900°C 0.36
1800°F 0.36 1000°C 0.36
1900°F 0.36 1050°C 0.36
2000°F 0.36 1100°C 0.36
2100°F 0.36 1150°C 0.36
2200°F 0.36 1200°C 0.36

Total Hemispherical Emissivity of HAYNES® 233® Alloy (Solution Annealed Bar)

Total hemispherical emissivity is a measure of a material’s effectiveness in emitting thermal radiation. It is a function of temperature and the nature of the material. The value is the ratio of the emittance of the material by that of a black body, which has an emissivity value of one, indicating an object that absorbs all incident radiation. Emissivity testing was conducted under vacuum on bare metallic surfaces since the presence of an oxide scale can have a significant impact on this value.

Age-hardened

HAYNES® 233® alloy can be age-hardened to significantly increase strength at low to intermediate temperatures (below the gamma-prime solvus of 1767°F (964°C)). A typical age-hardening heat treatment for this alloy is 1650°F/4h/AC + 1450°F/8h/AC (899°C/4h/AC + 788°C/8h/AC).

Properties of HAYNES® 233® alloy in the age-hardened condition are shown on the following pages.

Creep and Rupture Properties – Age-hardened

HAYNES® 233® alloy in the age-hardened condition exhibits excellent creep strength and rupture life at temperatures from 1200°F – 1700°F, performing significantly better than Waspaloy alloy and 263 alloy. In this temperature range, age-hardened 233® alloy has creep strength and rupture life far superior to those of solid-solution-strengthened alloys.

233® Sheet Creep and Stress Rupture Strength – Age-hardened

Test Temperature Creep Approximate Initial Stress to Produce Specified Creep in:
100 hr 1,000 hr 10,000 hr
% ksi MPa ksi MPa ksi MPa
1200 649 0.5 83 575 72 499 57* 393*
1 87 599 76 522 60* 414*
R 107 738 85 588 65* 448*
1300 704 0.5 68 467 51 351 35* 241*
1 71 488 54 370 37* 255*
R 78 540 57 396 40* 276*
1400 760 0.5 47 322 31 211 18* 124*
1 49 341 33 227 20* 138*
R 53 363 36 245 23* 159*
1500 816 0.5 28 193 16 111 9* 59*
1 30 208 18 122 10* 67*
R 33 227 21 142 12* 85*
1600 871 0.5 15 104 8 53 3.6 25
1 17 114 9 60 4.2 29
R 19 134 11 78 6 43

*Significant Extrapolation

Property Test Temperature 233® alloy 263 alloy 282® alloy Waspaloy alloy
ksi MPa ksi MPa ksi MPa ksi MPa
Stress to Produce 1% Creep in 100h 1200 649 87 600 75 517 - - 81 558
1400 760 49 338 37 255 48 331 41 283
1500 816 30 207 22 152 32 221 25 172
1600 871 17 117 11 76 18 124 15 103
Stress to Produce 1% Creep in 1000h 1200 649 76 524 58 400 79 545 67 462
1400 760 33 228 25 172 35 241 28 193
1500 816 18 124 12 83 21 145 16 110
1600 871 9 62 6 41 10 69 7 48
Stress to Produce Rupture in 100h 1200 649 107 738 77 531 - - 92 634
1400 760 53 365 42 290 53 386 53 365
1500 816 33 228 25 172 37 255 32 221
1600 871 19 131 14 97 22 152 19 131
Stress to Produce Rupture in 1000h 1200 649 85 586 64 441 80 552 80 552
1400 760 36 248 28 193 38 262 36 248
1500 816 21 145 15 193 23 159 20 138
1600 871 11 76 7 103 12 83 7 48

Low Cycle Fatigue – Age-hardened

Comparative Low-Cycle Fatigue Data: Age-hardenable Alloys*

*Age-hardened (282® alloy: 1850°F (1010°C)/2h/AC + 1450°F (788°C)/8h/AC, 263 alloy: 1472°F (800°C)/8h/AC, Waspaloy alloy: 1825°F (995°C)/2h/AC + 1550°F (845°C)/4h/AC + 1400°F (760°C)16h/AC , 233® alloy: 1650°F(899°C)/4h/AC + 1450°F (788°C)/8h/AC)

Oxidation Resistance – Age-hardened

While oxidation attack at 1600°F tends to be low among both solid-solution-strengthened and age-hardened Ni-base alloys in general, HAYNES® 233® alloy exhibits superior oxidation resistance among those alloys.

Static Oxidation – Age-hardened

Alloy Comparative Oxidation Resistance in Flowing Air, 1008 Hours*
1600°F (871°C)
Metal Loss Average Metal Affected
mils µm mils µm
*233® <0.1 <1 0.2 6
**X <0.1 <1 0.4 10
**625 0.1 2 0.5 12
**230® 0.1 1 0.6 14
**617 <0.1 <1 0.8 21
*282® <0.1 <1 0.9 23
*263 <0.1 <1 1.1 28
*Waspaloy <0.1 <1 1.1 28

All are single test results.

*Age-hardened (233® alloy:  1650°F/4h/AC + 1450°F/8h/AC [899°C/4h/AC + 788°C/8h/AC]; 282® alloy:  1850°F/2h/AC + 1450°F/8h/AC [1010°C/2h/AC + 788°C/8h/AC]; Waspaloy:  1825°F/2h/AC + 1550°F/4h/AC + 1400°F/16h/AC [996°C/2h/AC + 843°C/4h/AC + 760°C/16h/AC]; 263 alloy:  1472°F/8h/AC [800°C/8h/AC])

**Solution Annealed

Tensile Properties – Age-hardened

Tensile Properties of HAYNES® 233® Sheet, Age-Hardened*

Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation
°F °C ksi MPa ksi MPa %
RT RT 115.2 795 173.7 1198 24.9
200 93 110.7 763 170.2 1174 24.7
400 204 108.3 747 167.6 1155 25.8
600 316 105.3 726 161.1 1111 24.9
800 427 106.8 736 156.1 1076 26.1
1000 538 103.8 716 149.6 1032 25.9
1200 649 100.1 690 158.7 1094 25.0
1400 760 97.9 675 117.1 807 27.2
1500 816 79.7 549 91.9 633 25.5
1600 871 54.6 376 64.6 446 27.0
1700 927 31.0 214 37.8 261 38.3

Tensile Properties of HAYNES® 233® Plate, Age-Hardened*

Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation Reduction of Area
°F °C ksi MPa ksi MPa % %
RT RT 117.0 807 178.3 1230 24.8 31.4
200 93 114.5 790 173.9 1199 25.0 29.7
400 204 107.5 741 170.4 1175 22.3 24.0
600 316 106.2 732 164.8 1136 21.4 26.9
800 427 112.1 773 157.9 1088 21.1 22.5
1000 538 106.9 737 156.3 1078 29.5 21.2
1200 649 104.8 722 165.2 1139 29.5 25.4
1400 760 100.4 692 120.7 832 32.6 36.0
1500 816 84.6 583 95.3 657 31.5 38.6
1600 871 58.0 400 68.3 471 39.1 52.7
1700 927 34.2 236 40.6 280 64.1 78.2

Comparative Tensile Properties of HAYNES Age-Hardened Alloys* (Sheet)

Alloy RT
0.2% Yield Strength  Ultimate Tensile Strength  Elongation
ksi MPa ksi MPa %
Waspaloy 130 899 189 1304 25
233® 115 795 174 1198 25
282® 101 699 164 1132 30
263 89 615 151 1041 36
Alloy 1000°F (538°C)
0.2% Yield Strength  Ultimate Tensile Strength  Elongation
ksi MPa ksi MPa %
Waspaloy 118 812 170 1175 22
233® 104 716 150 1032 26
282® 92 632 139 960 36
263 76 527 125 860 42
Alloy 1200°F (649°C)
0.2% Yield Strength  Ultimate Tensile Strength  Elongation
ksi MPa ksi MPa %
Waspaloy 114 784 165 1137 32
233® 100 690 159 1094 25
282® 92 631 146 1005 27
263 75 518 131 901 37
Alloy 1400°F (760°C)
0.2% Yield Strength  Ultimate Tensile Strength  Elongation
ksi MPa ksi MPa %
Waspaloy 102 706 119 822 33
233® 98 675 117 807 27
282® 89 615 121 833 22
263 76 524 101 696 27
Alloy 1600°F (871°C)
0.2% Yield Strength  Ultimate Tensile Strength  Elongation
ksi MPa ksi MPa %
Waspaloy 52 357 66 456 48
233® 55 376 65 446 27
282® 73 501 81 555 31
263 43 296 51 348 58

*Age-hardened (282® alloy: 1850°F (1010°C)/2h/AC + 1450°F (788°C)/8h/AC, 263 alloy: 1472°F (800°C)/8h AC, Waspaloy alloy: 1825°F (995°C)/2h/AC + 1550°F (845°C)/4h/AC + 1400°F (760°C)16h/AC , 233® alloy: 1650°F(899°C)/4h/AC + 1450°F(788°C)/8h/AC)

Thermal Stability – Age-hardened

Room Temperature Tensile Properties of Age-hardened* and Thermally Exposed 233® (Sheet)

Exposure Temperature Exposure Duration Test Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation
°F °C h °F °C ksi MPa ksi MPa %
1200 649 1000 RT RT 133.7 922 189 1303 21.8
1400 760 1000 RT RT 116.4 803 177 1220 20.9
1600 871 1000 RT RT 76.8 529 147.6 1018 29
1200 649 1000 1200 649 113.2 781 170.3 1174 17.6
1400 760 1000 1400 760 91.4 630 115.4 796 33.5
1600 871 1000 1600 871 33.4 230 56.8 391 43.1

*Age-hardened (233® alloy: 1650°F/4h/AC + 1450°F/8h/AC [899°C/4h/AC + 788°C/8h/AC])

Comparative Thermal Stability Data of Gamma-Prime Strengthened Alloys (Sheet)

Room Temperature Tensile Data – Exposed at 1200℉ (649℃) for 1,000 hours
Alloy 0.2% Yield Strength Ultimate Tensile Strength Elongation
ksi MPa ksi MPa ksi
233® 133.7 922 189 1303 21.8
262 113.6 783 166.6 1149 21.3
282® 112.9 778 172.8 1191 25.8
Waspaloy 136.5 941 196.2 1353 22.6
Room Temperature Tensile Data – Exposed at 1400℉ (760℃) for 1,000 hours
Alloy 0.2% Yield Strength Ultimate Tensile Strength Elongation
ksi MPa ksi MPa ksi
233® 116.4 803 177 1220 20.9
263 92.7 639 160.3 1105 32.4
282® 104.1 718 170.5 1176 22.8
Waspaloy 112.9 779 182.4 1258 24
Room Temperature Tensile Data – Exposed at 1600℉ (871℃) for 1,000 hours
Alloy 0.2% Yield Strength Ultimate Tensile Strength Elongation
ksi MPa ksi MPa ksi
233® 76.8 529 147.6 1018 29
263 55 379 125.2 863 40.9
282® 72.9 505 141.4 975 24.2
Waspaloy 84.6 584 149.3 1030 18.1

*Thermal exposure was applied to samples in the age-hardened condition (263 alloy: 1472°F (800°C)/8h/AC, Waspaloy alloy : 1825°F (996°C)/2h/AC + 1550°F (843°C)/4h/AC + 1400°F (760°C)/16h/AC, 282® alloy: 1850°F(1010°C)/2h/AC + 1450°F (788°C)/8h/AC)

Welded Tensile Properties – Age-hardened

HAYNES® 233® alloy can be readily welded using both Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW) processes, with 233-W® alloy recommended as filler metal. Transverse weld tensile properties of 233® alloy sheet and plate welded with 233-W® alloy filler metal are similar or higher than that of 233® alloy sheet and plate. For more information on 233-W® alloy filler metal, please see the 233-W® Alloy At A Glance datasheet here.

Welded Transverse Tensile Data – HAYNES® 233® Plate – 0.500 in (12.7 mm)

Solution Annealed Prior to GMAW-P Welded – Using 233-W® Filler Metal

Temperature 0.2% Yield Strength Ultimate Tensile Strength 4D Elongation Reduction of Area Failure Location
°F °C ksi MPa ksi MPa % %
GMAW-P As-Welded
RT RT 96.3 664 139.3 960 25.6 34.2 Weld Metal
1800 982 15.2 105 19.7 136 43.9 44.5 Weld Metal

Welded Transverse Tensile Data – HAYNES® 233® Sheet – 0.125” (3.2 mm)

Annealed and Age-Hardened After Autogenous GTAW

GTAW + 2150°F (1177°C) /15min/WQ + 1650°F (899°C)/4hr/AC + 1450°F (788°C)/8hr/AC

Temperature Yield Strength at 0.2% Offset Ultimate Tensile Strength 4D Elongation Failure Location
°F °C ksi MPa ksi MPa %
GTAW + 2150°F (1177°C) /15min/WQ + 1650°F (899°C)/4hr/AC + 1450°F (788°C)/8hr/AC
RT RT 111.8 771 171.1 1180 16.8 Base Metal
1400 760 98.9 682 122.2 843 11.5 Base Metal
1600 871 58.2 401 66.4 458 12.1 Base Metal
1800 982 14.4 99 18.6 128 43.8 Base Metal

GMAW-P, As-Welded – Using 233-W® Filler Metal

Temperature Yield Strength at 0.2% Offset Ultimate Tensile Strength 4D Elongation Reduction of Area Failure Location
°F °C ksi MPa ksi MPa % %
GMAW-P As-Welded
RT* RT* 114.9 792 173.3 1195 19.3 21.1 Weld Metal
1400** 760** 109.9 758 120.6 832 17.6 22.5 Weld Metal
1600** 871** 60.3 416 70.3 485 13.7 18.1 Weld Metal
1800* 982* 13.0 90 18.6 128 47.3 55.9 Weld Metal

*Single test result;
**Average of duplicate test results

Physical Properties – Age-hardened

Physical Property Customary Units Metric Units
Density
0.296 lb/in3
8.19 g/cm3
Melting Range 2422 - 2532°F 1328 - 1389°C
Gamma-Prime Solvus 1767°F 964°C
Specific Heat RT 0.105 BTU/lb-°F RT 358 J/kg-°C
200°F 0.109 BTU/lb-°F 100°C 373 J/kg-°C
400°F 0.114 BTU/lb-°F 200°C 389 J/kg-°C
600°F 0.119 BTU/lb-°F 300°C 404 J/kg-°C
800°F 0.125 BTU/lb-°F 400°C 421 J/kg-°C
1000°F 0.129 BTU/lb-°F 500°C 433 J/kg-°C
1200°F 0.148 BTU/lb-°F 600°C 477 J/kg-°C
1400°F 0.149 BTU/lb-°F 700°C 502 J/kg-°C
1600°F 0.203 BTU/lb-°F. 800°C 544 J/kg-°C
Thermal Conductivity RT
69 BTU-in/ft2-hr-°F
RT 9.9 W/m-°C
200°F
77 BTU-in/ft2-hr-°F
100°C 11.2 W/m-°C
400°F
90 BTU-in/ft2-hr-°F
200°C 12.9 W/m-°C
600°F
102 BTU-in/ft2-hr-°F
300°C 14.5 W/m-°C
800°F
117 BTU-in/ft2-hr-°F
400°C 16.4 W/m-°C
1000°F
130 BTU-in/ft2-hr-°F
500°C 18.1 W/m-°C
1200°F
141 BTU-in/ft2-hr-°F
600°C 19.9 W/m-°C
1400°F
147 BTU-in/ft2-hr-°F
700°C 20.7 W/m-°C
1600°F
147 BTU-in/ft2-hr-°F
800°C 21.3 W/m-°C
Thermal Diffusivity RT
0.108 ft2/h
RT
 0.0280 cm2/s
200°F
0.117 ft2/h
100°C
 0.0322 cm2/s
400°F
0.130 ft2/h
200°C
 0.0372 cm2/s
600°F
0.142 ft2/h
300°C
 0.0372 cm2/s
800°F
0.155 ft2/h
400°C
 0.0391 cm2/s
1000°F
0.167 ft2/h
500°C
 0.0438 cm2/s
1200°F
0.179 ft2/h
600°C
 0.0453 cm2/s
1400°F
0.186 ft2/h
700°C
 0.0502 cm2/s
1600°F
0.184 ft2/h
800°C
 0.0545 cm2/s
Electrical Resistivity RT 49.5 microhms-in RT  125.6 microhms-cm
200°F 50.2 microhms-in 100°C 127.6 microhms-cm
400°F 51.3 microhms-in 200°C 130.2 microhms-cm
600°F 52.2 microhms-in 300°C 132.4 microhms-cm
800°F 53.1 microhms-in 400°C 134.3 microhms-cm
1000°F 53.9 microhms-in 500°C 136.0 microhms-cm
1200°F 54.2 microhms-in 600°C 137.0 microhms-cm
1400°F 54.2 microhms-in 700°C 137.9 microhms-cm
1600°F 53.4 microhms-in 800°C 137.3 microhms-cm
Mean Coefficient of Thermal Expansion 200°F  6.6 µin/in-°F 100°C 12.1 µm/m-°C
400°F 7.0 µin/in-°F 200°C 12.5 µm/m-°C
600°F 7.2 µin/in-°F 300°C 12.9 µm/m-°C
800°F 7.4 µin/in-°F 400°C 13.2 µm/m-°C
1000°F 7.6 µin/in-°F 500°C 13.5 µm/m-°C
1200°F 7.8 µin/in-°F 600°C 13.8 µm/m-°C
1400°F 8.1 µin/in-°F 700°C 14.3 µm/m-°C
1600°F 8.8 µin/in-°F 800°C 14.9 µm/m-°C
Dynamic Modulus of Elasticity RT
32.0 x 106 psi
RT 220 GPa
100°F
31.8 x 106 psi
100°C 215 GPa
200°F
31.4 x 106 psi
150°C 213 GPa
300°F
30.9 x 106 psi
200°C 210 GPa
400°F
30.4 x 106 psi
250°C 207 GPa
500°F
29.8 x 106 psi
300°C 204 GPa
600°F
29.3 x 106 psi
350°C 200 GPa
700°F
28.7 x 106 psi
400°C 197 GPa
800°F
28.2 x 106 psi
450°C 193 GPa
900°F
27.6 x 106 psi
500°C 189 GPa
1000°F
26.9 x 106 psi
550°C 185 GPa
1100°F
26.2 x 106 psi
600°C 180 GPa
1200°F
25.5 x 106 psi
650°C 176 GPa
1300°F
24.8 x 106 psi
700°C 171 GPa
1400°F
24.0 x 106 psi
750°C 166 GPa
1500°F
23.1 x 106 psi
800°C 161 GPa
1600°F
22.2 x 106 psi
850°C 155 GPa
Dynamic Shear Modulus RT
11.9 x 106 psi
RT 82 GPa
100°F
11.9 x 106 psi
100°C 80 GPa
200°F
11.7 x 106 psi
150°C 79 GPa
300°F
11.5 x 106 psi
200°C 78 GPa
400°F
11.3 x 106 psi
250°C 77 GPa
500°F
11.1 x 106 psi
300°C 76 GPa
600°F
10.9 x 106 psi
350°C 74 GPa
700°F
10.7 x 106 psi
400°C 73 GPa
800°F
10.4 x 106 psi
450°C 71 GPa
900°F
10.2 x 106 psi
500°C 70 GPa
1000°F
10.0 x 106 psi
550°C 69 GPa
1100°F
9.7 x 106 psi
600°C 67 GPa
1200°F
9.4 x 106 psi
650°C 65 GPa
1300°F
9.1 x 106 psi
700°C 63 GPa
1400°F
8.8 x 106 psi
750°C 61 GPa
1500°F
8.5 x 106 psi
800°C 60 GPa
1600°F
8.2 x 106 psi
850°C 57 GPa
Poisson's Ratio RT 0.34 RT 0.34
100°F 0.34 100°C 0.34
200°F 0.34 150°C 0.34
300°F 0.34 200°C 0.34
400°F 0.34 250°C 0.34
500°F 0.34 300°C 0.34
600°F 0.34 350°C 0.35
700°F 0.35 400°C 0.35
800°F 0.35 450°C 0.35
900°F 0.35 500°C 0.35
1000°F 0.35 550°C 0.35
1100°F 0.35 600°C 0.35
1200°F 0.36 650°C 0.36
1300°F 0.36 700°C 0.36
1400°F 0.36 750°C 0.36
1500°F 0.36 800°C 0.36
1600°F 0.36 850°C 0.36

*Age-hardened (282® alloy: 1850°F (1010°C)/2h/AC + 1450°F (788°C)/8h/AC, 263 alloy: 1472°F (800°C)/8h/AC, Waspaloy alloy: 1825°F (995°C)/2h/AC +1550°F (845°C)/4h/AC + 1400°F (760°C)16h/AC, 233® alloy: 1650°F(899°C)/4h/AC + 1450°F(788°C)/8h/AC), R-41 alloy: 1650°F (899°C)/4hr/AC. Solution Annealed (230® alloy and 617 alloy).

Fabrication

HAYNES® 233® alloy is readily fabricable, similar to other Ni-base alloys in its class, as shown in the (Comparative Controlled Heating Rate Test) table and the (Comparative Hardness vs % Cold Work) figure below. All fabrication-related testing was performed on material in the solution annealed condition.

Heat Treatment

HAYNES® 233® alloy is supplied in the mill (solution) annealed condition. The purpose of solution annealing is to dissolve secondary carbides and gamma prime precipitates, for optimal ductility and fabricability. Solution annealing is typically performed by heating to a temperature in the range of 2100 to 2150°F (1149 to 1177°C) for a time commensurate with thickness, followed by a water quench. The solution annealed condition is most appropriate for applications above 1767°F (964°C), which is the gamma prime solvus temperature. The alloy retains its excellent combination of properties up to at least 2100°F (1149°C). When used in the solution annealed condition at temperatures below 1767°F (964°C), gamma-prime will precipitate and this should be taken into account for such applications.

For applications where age-hardening is required, the heat treatment alloy is typically 1650°F/4h/AC + 1450°F/8h/AC (899°C/4h/AC + 788°C/8h/AC).

Mechanical Properties

Room Temperature Hardness of HAYNES® 233® Alloy, Solution Annealed

Form Hardness
Sheet 89 HRBW
Plate 93 HRBW
Bar 93 HRBW

Room Temperature Tensile, HAYNES® 233® alloy, Solution Annealed

Form 0.2% Yield Strength Ultimate Tensile Strength Elongation Reduction of Area 
ksi MPa ksi MPa % %
Sheet 55.1 380 121.1 835 56 -
Plate 68.8 475 132.6 914 51.6 59.6

Resistance to Strain-age Cracking

Controlled Heating Rate Tensile (CHRT) Test (Gleeble)

Sheet – 0.063” (1.6 mm), Tested at 1450°F (788°C)

Alloy % Elongation in 1.5" (38.1 mm)
263 18.8
282® 13.0
233® 12.5
214® 8.1
R-41 6.9
Waspaloy 6.8

The controlled heating rate tensile test is one measure of resistance of gamma-prime strengthened alloys to strain-age cracking.  Samples originally in the solution annealed condition are heated to the test temperature at a rate, 25-30°F (14-17°C) per minute, chosen to simulate a typical post-welding heat treatment.  Tests are performed for each alloy over a range of test temperatures.  The susceptibility of a given alloy to strain-age cracking is taken to be related to the minimum tensile elongation observed within that temperature range (lower minimum elongation = more susceptible to strain-age cracking).

For further information about this test please see the following references:

1.  R.W. Fawley, M. Prager, J.B. Carlton, and G. Sines, WRC Bulletin No. 150, Welding Research Council, NY, 1970.    
2.  M.D. Rowe, Welding Research, Supplement to the Welding Journal, 27-s – 34-s, February 2006.
3.  D.A. Metzler, Welding Research, Supplement to the Welding Journal, 249-s – 256-s, October 2008.

Olsen Cup Formability Test

Alloy Olen Cup Height
inches mm
263 0.50 13
617 0.45 11
282® 0.43 11
233® 0.41 10
230® 0.40 10

All tests were performed on sheet 0.060” to 0.067” (1.5 to 1.7 mm) thick, using a ball diameter of 0.875” (22.2 mm), die diameter of 1.125” (28.6 mm), and petroleum jelly lubricant.

Effect of Cold Reduction on Room Temperature Tensile Properties

Transverse Tensile Properties of Cold-Reduced 233® alloy Reduced from 0.125” Mill Annealed Sheet

Welding

HAYNES® 233® alloy is readily weldable by Gas Tungsten Arc (GTAW) and Gas Metal Arc (GMAW) welding processes. For root pass welding, GTAW is suggested. GMAW may be preferable for thicker section welds and the pulsed spray transfer mode (GMAW-P) is suggested. High heat input welding methods, such as submerged arc welding (SAW), should be avoided. For further details, please click here for the Welding and Fabrication guide, which contains general welding guidelines applicable to 233® alloy.

Base Metal Preparation

Wrought forms of 233® alloy are furnished in the solution annealed condition, unless otherwise specified, and is preferably welded in this condition. The purpose of solution annealing is to dissolve secondary carbides and gamma-prime precipitates for optimal ductility and fabricability. Welding of cold-worked material is strongly discouraged since it accelerates precipitation of secondary phases, induces residual stresses, and increases the likelihood for cracking. Solution annealing is typically performed by heating to a temperature in the range of 2125 to 2150°F (1163 to 1177°C) for a time commensurate with thickness, followed by rapid air cooling or water quenching. Water quenching is recommended when annealing heavy section components and cold-worked structures prior to welding. The joint surface and adjacent areas should be thoroughly cleaned, to reveal bright, metallic surfaces, before welding. All grease, oil, crayon marks, sulfur compounds, and other foreign matter should be removed.

Filler Metal Selection

For welding of 233® alloy, HAYNES® 233-W® filler metal is suggested. Please click here for more information about 233-W® filler metal, which is specially formulated for welding of 233® alloy. For dissimilar alloy welds involving 233® alloy, please consult with Haynes International for suggested filler metals.

Preheating, Interpass Temperatures, and Postweld Heat Treatment

Preheating above normal ambient or room temperature is normally not required. To minimize the precipitation of secondary phases due to welding heat input, a maximum interpass temperature of 200°F (93°C) is suggested. Auxiliary cooling methods may be used between weld passes, as needed, providing that such methods do not introduce contaminants.

233® alloy welds can be utilized in the as-welded, postweld solution annealed, or postweld age-hardened conditions. The as-welded or postweld solution annealed conditions are most appropriate for applications above 1767°F (964°C), which is the gamma-prime solvus temperature. For service temperatures regularly below 1767°F (964°C), 233® alloy welds may be given an age hardening heat treatment for increased strength. A typical age-hardening heat treatment for 233® alloy is 1650°F/4h/AC + 1450°F/8h/AC (899°C/4h/AC + 788°C/8h/AC). Solution annealing prior to age hardening is preferable.

Mechanical Properties

Tensile data for a variety of welds in both solution annealed and age-hardened conditions can be found previously.

Additive Manufacturing

HAYNES® 233® alloy powder may be utilized for various additive manufacturing processes. Properties of 233® alloy produced by laser powder directed energy deposition (LP-DED) and laser powder bed fusion (LPBF) are shown below. All subsequent heat treatments are clearly noted.

HAYNES® 233-W® alloy wire also may be utilized for additive manufacturing. Relevant data will be available in the near future. For additional information, please contact Brandon Furr, 832-835-4681, [email protected].

Tensile Properties of HAYNES® 233® Alloy Fabricated by Laser Powder Directed Energy Deposition (LP-DED)

Stress Relieved + Hot Isostatic Pressed + Solution Annealed Condition

Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation Reduction of Area
°F °C ksi MPa ksi MPa % %
RT RT 111.8 771 164.1 1131 18.3 26.1
1000 538 102.4 706 143.1 987 16.5 24.6
1600 871 63.9 441 64.6 445 19.2 28.7

Tensile test specimens are orientated in the vertical direction Samples in SR+HIP+SA condition. SR: 2125°F/1hr/FC, HIP: 2125°F/100MPa/3.5hr/FC, SA: 2150°F/1hr/ArQ
Average of triplicate samples

Stress Relieved + Hot Isostatic Pressed + Solution Annealed + Age-hardened Condition

Sample Metal Loss Average Metal Affected
mils mm mils mm
HAYNES 233® Laser Powder Bed Fusion (LPBF) Samples* Horizontal Direction 0.04 1 0.8 19
Vertical Direction 0.05 1 1.2 29
HAYNES 233® alloy** Wrought Sheet 0.01 0.4 0.3 7

Tensile test specimens are orientated in the vertical direction
Samples in SR+HIP+SA+1650°F/4hr/ArQ + 1450°F/8hr/FC condition.
SR: 2125°F/1hr/FC, HIP: 2125°F/100MPa/3.5hr/FC, SA: 2150°F/1hr/ArQ
Average of triplicate samples

Oxidation Resistance of HAYNES® 233® Alloy Fabricated by Laser Powder Bed Fusion (LPBF)

Sample Metal Loss Average Metal Affected
mils mm mils mm
HAYNES 233® Laser Powder Bed Fusion (LPBF) Samples* Horizontal Direction 0.04 1 0.8 19
Vertical Direction 0.05 1 1.2 29
HAYNES 233® alloy** Wrought Sheet 0.01 0.4 0.3 7

*SR (1950°F/90min) + HIP (2192°F/4hr/15ksi) + SA (2150°F/1hr) + 2-Step Age (1650°F/4hr/AC + 1450°F/8hr/AC)
**Mill Annealed + 1650°F/4hr/AC + 1450°F/8hr/AC
Environment: Flowing air. Test Length: 1000 h. No. Cycles: 1000. Cycle length: 1 h.

Disclaimer

Haynes International makes all reasonable efforts to ensure the accuracy and correctness of the data displayed on this site but makes no representations or warranties as to the data’s accuracy, correctness or reliability. All data are for general information only and not for providing design advice. Alloy properties disclosed here are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature and, as such, are indicative only of the results of such tests and should not be considered guaranteed maximums or minimums.  It is the responsibility of the user to test specific alloys under actual service conditions to determine their suitability for a particular purpose.

For specific concentrations of elements present in a particular product and a discussion of the potential health affects thereof, refer to the Safety Data Sheets supplied by Haynes International, Inc.  All trademarks are owned by Haynes International, Inc., unless otherwise indicated.

Alloy Brochure

Footer