HAYNES® HR-160® 合金

主な特徴

耐高温腐食性

HAYNES® HR-160® (UNS N12160) 合金は、様々な形態の高温腐食に対して際立った耐性を持った固溶強化型ニッケルーコバルトークロムーケイ素合金です。HR-160® 合金は、還元性および酸化性の両方の雰囲気中において、優れた耐硫化性および耐塩酸性を持っています。また、この合金は、酸化、高温腐食、浸炭、メタルダスティング、窒化、ならびにリン、バナジウムおよび他の不純物によって形成されるような低融点化合物による腐食に対して並外れて良好な耐性があります。この合金は、低品位燃料の燃焼によって生じる高温腐食環境、あるいは硫黄、塩素、フッ素、バナジウム、リン、およびその他の腐食性汚染物質を伴った化学原料の処理用途に特に適しています。この合金は、2200℃(1204℃)までの温度に耐えることができます。

容易な加工

HAYNES® HR-160® 合金は、優れた成形および溶接特性を有しています。部材全体が2050℃ (1121℃)に達するまで十分な時間この温度で保持できるのであれば、この合金は鍛造あるいは熱間加工することができます。また、延性が良好であることから、HR-160®合金は容易に冷間加工で成形できます。冷間あるいは熱間加工した部品は、特性の最適バランスを回復させるために、アニールして急冷する必要があります。HR-160®合金は、ガスタングステンアーク溶接(TIG)、ガスメタルアーク溶接(MIG)、および抵抗溶接などの様々な方法で溶接することができます。

熱処理

HR- 160° 合金は、指定がなければ、溶体化処理した状態で供給されます。この合金は、特性を最適化するために 2050° (1121° C)で溶体化処理して急冷します。加工および成形作業中に中間アニーリングが必要な場合は、 1950° (1066° C)の低温で実施できます。

適合規格

HR-160[®] 合金の厚板、薄板、帯板、棒、鍛造材、チューブ、パイプ、および継手類は、ASME規格のSB 366、SB 435、SB 572、SB 619、SB 622、およびSB 626 ならびに ASTM規格のB 366、B 435、B 572、B 619、B 622、およびB 626 で網羅されています。

ASME圧力容器基準

HR-160®合金は、ASME Section VIII Division 1 の建造基準において、1500 $^\circ$ (815 $^\circ$ C)の温度まで網羅されています。Code Case 2385の建造基準においては、HR-160 $^\circ$ C合金は1800 $^\circ$ C(982 $^\circ$ C)の温度まで網羅されています。溶接継手におけるプレート(厚板)の板厚は、0.50 in (12.7 mm)が上限です。

用途

廃棄物焼却炉および化学プロセス産業向けの HR-160®合金製アニューバ式排ガス煙突の流れモニター装置の断面。


パルプおよび紙回収ボイラの排気ダクトの HR-160®合金製ライニング(内筒)。外殻は 炭素鋼。

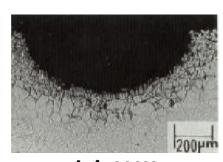
多くの廃棄物焼却および化学プロセス設備では、HR-160® 合金製の熱電対保護チューブが傑出した成功を収めています。Ni-Cr合金やステンレス鋼に比べて、寿命が10倍以上に延びるのが普通です。

HR-160®合金製の管シールドは、都市ごみおよび産業廃棄物焼却炉用の最良の過熱器管シールド材と考えられています。HR-160®合金の使用は、高温腐食およびフライアッシュによるエロージョンが主な留意事項である都市ごみ焼却炉の寿命を大幅に改善しました。

標準組成

重量%

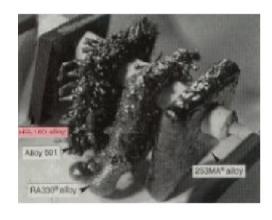
ニッケル:Ni	37 Balance
コバルト:Co	29
クロム:Cr	28
鉄:Fe	2 max.
ケイ素:Si	2.75
マンガン:Mn	0.5
チタン:Ti	0.5
炭素:C	0.05
タングステン:W	1 max.
モリブデン:Mo	1 max.
ニオブ:Nb	1 max.
アルミニウム:Al	0.4 max.


耐高温腐食性

還元雰囲気中における硫化

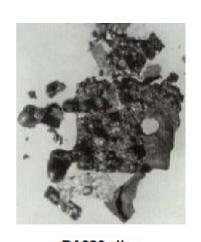
Ar-5%H2-5%CO-1%CO-0.15%H₂S (Vol. %) (PO₂= 3 x 10^{-19} atm, PS₂= 0.9 x 10^{-6} atm)

<u>1600°F (871°C) / 215 時間</u>


HR-160® 合金

556® 合金

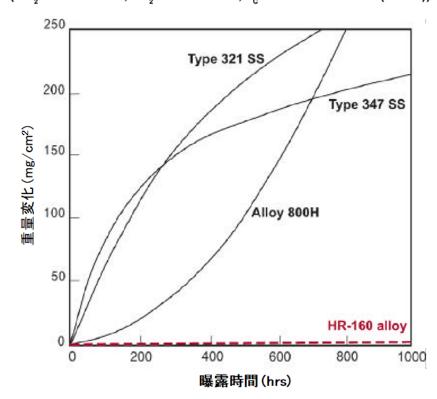
合金 800H


写真の上端は試料の元の表面です。試験片は試験した後、金属組織観察装置に取り付ける前に、腐食生成物を除去するために陰極電解で脱スケールしました。

<u>1600°F (871°C) / 500 時間</u>

HR-160® alloy

RA330 alloy

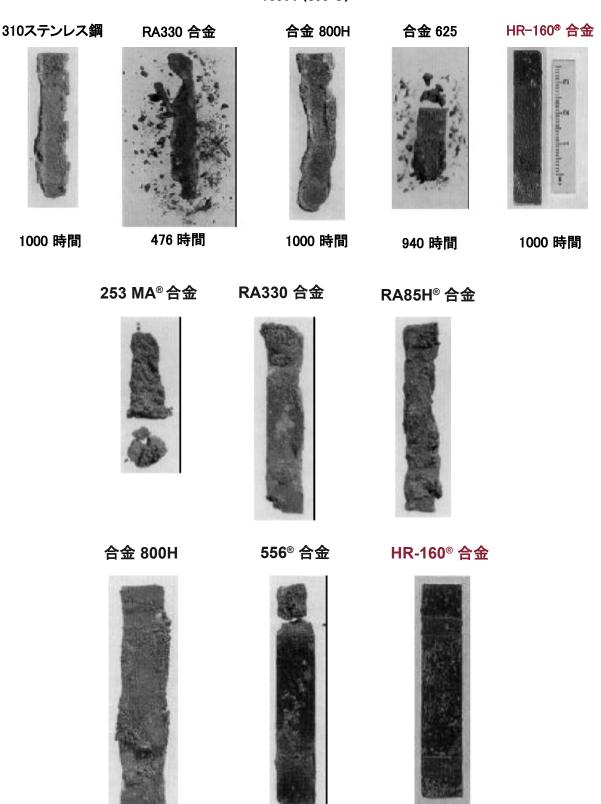

耐高温腐食性(続き)

	1600°F (871°C)/500 時間										
合金	コバルト 含有量	メタル	レロス	平均腐	食深さ	最大腐食深さ					
	%	Mils	mm	Mils	mm	Mils	mm				
6B	57	0.3	0.008	3.1	0.08	3.3	0.08				
HR-160 [®]	30	0.2	0.005	5.2	0.13	5.7	0.14				
25	51	4.1	0.1	8.4	0.21	14.6	0.37				
188	39	7.6	0.1	14.9	0.38	23.6	0.6				
150	50	10.3	0.26	22.1	0.56	28.3	0.72				
556®	18	20.6	0.52	31.9	0.81	35.6	0.9				

還元雰囲気中における硫化

H ₂ -46%CO-0.8%CO-1.7%HS 総腐食深さ										
合金	1100°F	(593°C)	1300°F	(704°C)						
	mpy	mm/y	mpy	mm/y						
HR-160 [®]	14.4	0.37	27.3	0.7						
6B	23.6	0.6	264.4	6.72						
150	37.7	0.96	108.8	2.76						
25	94.1	2.39	188.5	4.79						
188	150.5	3.82	292.6	7.43						
556®	121.1	3.08	345.8	8.78						

 ${\rm H_2-7\%CO-1.5\%H_2O-0.6\%H_2S} \\ {\rm (PO_2=1~x~10^{-23}~atm,~PS_2=1~x~10^{-9}~atm,~a_c=0.3-0.4~at~1292°F~(700°C))} \\$


注記: HR-160® 合金は1000時間の曝露後、約 1.0 mg/cm² の重量増加を示しました。

耐高温腐食性(続き)

燃焼雰囲気中における硫黄誘起硫化

実験室における高温腐食バーナリグ試験 - No.2燃料油を燃焼させたバーナーリグの燃焼ガス流に、(重量で)50 ppmの塩(ほとんどが塩化ナトリウム)を一定に噴射し、その燃焼ガス流中に試験片を曝しました。また、試験片は1時間毎にテストチャンバから取り出して、390℃(199℃)以下まで2分間ファンで急冷することを繰り返す熱サイクルに曝しました。

0.4%の硫黄を含むNo. 2燃料油 1650℃(899℃)

耐酸化性

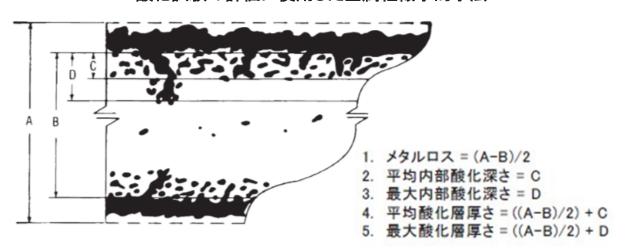
空気中での酸化

実験室試験は1800~2200°F(982~1204°C)の空気流中で1008時間行い、その間、試験片を168時間毎に1回、室温まで冷却しました。

		1800°	°F (982°	C)	2000°F (1093°C)				2100°F (1149°C)				2200°F (1204°C)			
合金	メタル	ロス		^工 均 層厚さ	メタル	ロス		均 層厚さ	メタル	ロス		均 層厚さ	メタル	ロス	平 酸化/	
	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm
HR-160®	0.7	18	5.5	140	1.7	43	10.3	262	2.5	64	16.0	406	3.6	91	22.0	559
800HT	0.0	0	4.1	104	7.6	193	11.6	295	11.0	279	15.0	381	19.4	493	>58	>1473
253MA	1.3	33	3.0	76	0.7	18	8.2	208	8.7	221	16.5	419	18.6	472	29.2	742
RA85H	0.5	13	8.2	208	2.9	74	25.9	658	3.7	94	>59	>1499	3.9	99	>59	>1499

空気中での長期間酸化

実験室試験は2000°F(1093°C)の静止空気(箱型炉)中で行い、その間、試験片を30日間毎に1回、 室温まで冷却しました。


	1800°F (982°C)					2000°F	(1093°C	C)		2100°F	(1149°C	;)		2200°F (1204°C)			
合金	メタル	/ロス	平: 酸化原		メタル	レロス	平均 酸化層厚さ		メタルロス		平均 酸化層厚さ		メタルロス		平均 酸化層厚さ		
	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	
HR-160®	2.5	64	16.7	424	3.6	91	29.0	737	7.6	193	58.7	1491	16.7	4204	26.3	668	
601	0.5	13	22.4	569	5.4	137	45.1	1146	12.6	320	72.8	1849	27.3	693	38.9	988	
RA85H	6.3	160	53.7	1364	17.9	455	80.3	2040	20.0	508	94.8	2408	>251.7	>6393	>251.7	>6393	
800HT	20.7	526	79.8	2027	44.3	1125	51.0	1295	65.2	1656	70.3	1786	>249.9	>6373	>249.9	>6373	

1800°F(982°C)での試験では、厚板を720日間(17,280時間)、静止空気中に曝しましたが、それ以外の温度条件では、厚板を360日間(8,640時間)、静止空気中に曝しました。1か月に1回、室温まで冷却するサイクルを繰り返しました。

1800°F (98				;)	2000°F (1093°C)				2100°F (1149°C)				2200°F (1204°C)			
合金	メタル	ルス	平 酸化原		メタル	/Dス		均 層厚さ	メタル	ルス	平: 酸化層		メタル	/ ロス	平 酸化層	
	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm	mils	μm
HR-160®	1.2	30	12.0	305	2.7	69	27.9	709	5.3	135	44.6	1133	8.9	226	>250.0	>6350
601	0.0	0	2.6	66	3.4	86	10.5	267	5.3	135	14.6	371	10.3	262	23.9	607
RA85H	0.7	18	14.6	371	8.9	226	14.3	363	6.4	163	>250.0	>6350	8.4	213	>250.0	>6350
800HT	4.6	117	14.1	358	22.2	564	27.9	709	43.9	1115	48.9	1242	65.6	1666	>250.0	>6350

厚板を360日間(8,640時間)、静止空気中に曝しました。1か月に1回、室温まで冷却するサイクルを繰り返しました。

酸化試験の評価に使用した金属組織学的手法

耐塩化性

高温塩化物蒸気腐食

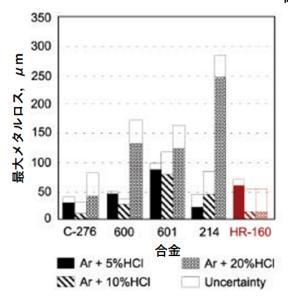
Ar-20%O₂-2%H₂O-0.05%NaCl (Vol.%) に1830°F (999°C) で75時間曝露

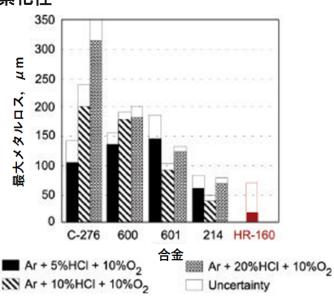
合金	総腐食深さ					
	mils	mm				
214 [®]	11.5	0.29				
HR-160 [®]	12	0.31				
800H	>62.0 (完全に腐食)					

塩化物蒸気に1600℃(871℃)で曝露

試験片を、塩化ナトリウム、塩化カリウムおよび塩化バリウムの蒸気を含む空気に1600°F(871°C)で173時間曝露するフィールド試験を実施しました。

HR-160® 合金


188 合金

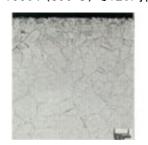

310ステンレス鋼

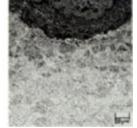
耐塩素化性

健全な金属の片面当たりの最大メタルロス。 塩素化雰囲気中における 1112°F(600°C)で 500 時間の実験室試験*。

健全な金属の片面当たりの最大メタルロス。 オキシ塩素化雰囲気中における 1112°F (600°C) で 500 時間の実験室試験*。

^{*}第11回 国際焼却会議(1992, May 11-15, 1992, Albuquerque, New Mexico)において、F. Devisme および N. H. Garnier が発表した "Corrosion Studies and Recommendation of Alloys for an Incinerator of Glove-Boxes Wastes" から引用したデータ


耐浸炭性


1800℃ (982℃)で500時間のグラファイト中での実験室密閉浸炭試験

合金	吸炭量	総浸滤	炭深さ		
	(mg/cm ²)	mils	mm		
HR-120 [®]	0	0	-		
556®	0	0	-		
HR-160 [®]	0.3	0	-		
800HT	0.3	0.9	0.02		
601	1	0.46	18		
RA330®	1.9	1.79	70.6		
310SS	7.7	2.14	84.2		
253 MA	11.6	2.34	92.1		

1650℃ (899℃)でカーボンベッドに曝露

活性炭製造中に、カーボンベッド中において 1650℃(899℃)で120時間のフィールド試験を実施

HR-160® 合金

316ステンレス鋼

Ar-5%H-1%CH (Vol.%)に1800で(982°C)で55時間曝露

合金	吸炭量					
卢亚	(mg/cm)					
HR-160 [®]	2.9					
601	3.2					
800H	3.6					
600	7.3					
HR-120 [®]	7.9					
556®	7.9					
RA330 [®]	9.2					
253 MA	9.4					
310SS	10.0					

耐窒化性

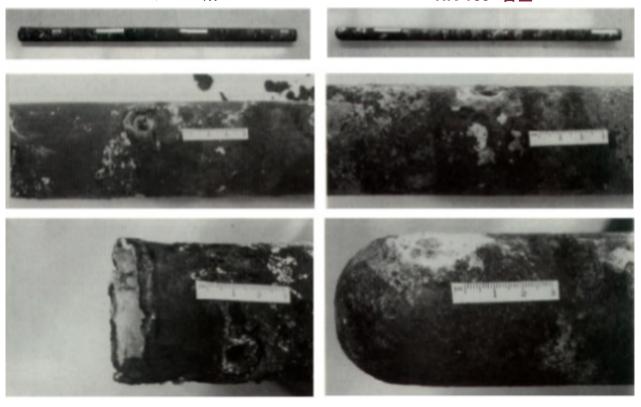
HAYNES® HR-160® 合金は、非常に高い耐窒化性があります。試験は、アンモニアあるいは窒素流中において、様々な温度で168時間実施しました。吸窒量は、曝露する前後の試料の化学分析と試料片の曝露面積から求めました。

アンモニア (NH₃) に168 時間曝露したときの吸窒量 (mg/cm²)

合金	1200°F (649°C)	1800°F (982°C)	2000°F (1093°C)	
HR-160 [®]	0.9	2.2	3	
601	1.1	1.2	2.6	
RA330 ®	4.7	3.9	3.1	
800H	4.3	4.0	5.5	
304SS	9.8	7.3	3.5	
316SS	6.9	6.0	3.3	
310SS	7.4	7.7	9.5	
446SS	28.8	12.9	4.5	
253 MA	-	3.3	6.3	

窒素 (N₂) に 2000年 (1093°C)で 168 時間曝露したときの吸窒量

合金	吸窒量 (mg/cm²)
HR-160 [®]	3.9
601	7.2
RA330 [®]	6.6
RA85H	8.5
253 MA	10.0
800H	10.3
800HT	11.4
310SS	12.3


ごみ焼却環境

都市、産業および有害廃棄物の焼却は、塩化物や硫酸塩の蒸気/堆積物とともに、典型的には SO₂、HCI、時にはHFのような腐食性成分を含んだ非常に腐食性がある環境を作り出します。以下の例は、HR-160®合金へのアップグレードによる相対的な改善を示しています。

都市ごみ焼却炉のスートブロワ 1400° (760°C) で 75 日間

446 ステンレス鋼

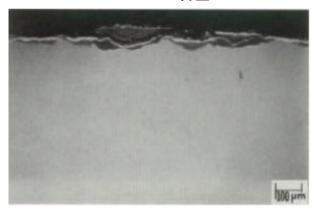
HR-160[®] 合金

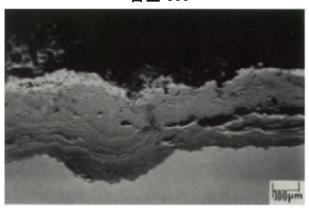
都市ごみ焼却炉のサーモウェル 1800-2100℃ (982-1149℃) で 180 日間

HR-160® 合金

都市ごみ焼却炉の HAYNES® HR-160® 合金製サーモウェル 1850-1950℉ (1010-1066℃) で 180 日間

非曝露端


曝露端


ごみ焼却環境(続き)

化学ゴミ焼却のフィールド試験において、 $HR-160^{\circ}$ 合金が SO_2 、HCI および HF を含んだ煙道ガスに 900° (482° C)で 5800時間曝された結果、わずかなスケールの付着あるいは金属の損耗が認められました。

HR-160[®] 合金

合金 600

引張特性

引張データ(厚板)*

試験	試験温度		0.2% 耐力		張強さ	伸び	絞り
°F	°C	ksi	MPa	ksi	MPa	%	%
70	21	45.6	314	111.2	767	68	73
200	93	40.4	279	104	717	69	74
400	204	33.8	233	97.9	675	71	74
600	316	27.6	190	91.9	634	74	70
800	427	26	179	87.7	605	76	68
1000	538	25.5	176	81.8	564	76	69
1200	649	25.7	177	75.8	523	70	67
1400	760	24.7	170	62.1	428	73	64
1600	871	22.1	152	38.3	264	85	84
1800	982	10.8	74	20.4	140	90	98
2000	1093	5	34	10.8	74	88	98
2100	1149	2.3	16	6	41	113	94
2200	1204	1.6	11	4.4	30	110	94

^{*}熱間圧延および溶体化処理済

引張特性(続き)

引張データ(薄板)*

試験	 温度	0.2% 耐力		極限引張強さ		伸び
°F	°C	ksi	MPa	ksi	MPa	%
70	21	51.2	353	110	758	63
1000	538	32.7	225	82.5	569	73
1200	649	31.2	215	75.3	519	62
1400	760	30.7	212	61.1	421	47
1600	871	15.9	110	34.9	241	41
1800	982	9.5	66	18.7	129	51
2000	1093	4.7	32	9.8	68	53
2100	1149	2.8	19	6.6	46	107
2200	1204	2	14	4.8	33	91

^{*}溶体化処理済

クリープおよびストレスラプチャー強度

2050℃ (1121℃) で溶体化処理した厚板

試験	油件	クリープ	下記時間で所定のクリープを生じるおおよその初期応力							
1八月大	日本場大川山ノ文		100 h		1000 h		10,000 h		100,000 h	
°F	°C	%	ksi	MPa	ksi	MPa	ksi	MPa	ksi	MPa
1100	593	1	29.4	203	20.4	141	14.4*	100	_	_
-	-	Rupture	45.5	315	32.2	223	22.9	158	113	16̄.3
1200	649	1	18.9	131	12.1	91	9.3*	64	-	-
-	-	Rupture	32.2	223	22.4	154	15.6	108	76	11
1300	704	1	12.5	86	8.7	60	6.2*	43	_	
-	-	Rupture	22.9	158	15.7	108	10.8	75	51	7.4
1400	760	1	8.5	59	6	41	4.2*	29	_	_
-	-	Rupture	16.4	113	11	76	7.4	51	34	5
1500	816	1	5.9	41	4.1	28	2.9*	20	-	-
-	-	Rupture	11.7	81	7.7	53	5.1	35	23	3.4
1600	871	1	4.2	29	2.9	20	2.1*	14	_	_
-	-	Rupture	8.4	58	5.5	38	3.6	25	17	2.4
1700	927	1	3	21	2.1	14	1.5*	10	_	_
_	-	Rupture	6.1	42	3.9	27	2.5	17	11	1.6
1800	982	1	2.2	15	1.5	10	1.1*	8	-	_
-	-	Rupture	4.4	30	2. 8	19	1.8	12	8	1.2

^{*}外挿值

クリープおよびストレスラプチャー強度(続き)

溶体化処理した薄板

28	ric	5 11 →	下記時間で所定のクリープを生じるおおよその初期応力							
温		クリープ	10	0 h	1,00	00 h				
°F	°C	%	ksi	MPa	ksi	MPa				
		0.5	16	110	12.5	86				
1200	649	1	18.5	128	15	103				
		R	28	193	20	138				
		0.5	11.5	79	9.2	63				
1300†	704	1	13.9	96	10.8	74				
		R	19	131	14.5	100				
		0.5	8.5	59	6.8*	47*				
1400	760	1	9.9	68	8.2*	57*				
		R	13	90	9.9	68				
		0.5	6.2	43	4.9*	34*				
1500	816	1	8.2	57	6.0*	41*				
		R	9.6	66	7.9	54				
		0.5	4.7	32	3.4*	23*				
1600	871	1	5.2	36	4.3*	30*				
		R	6.8	47	5.1	35				
		0.5	3.2	22	2.1*	14*				
1700	927	1	3.6	25	2.7*	19*				
		R	4.6	32	3.2	22				
		0.5	2.1	14	1.2	8.3				
1800	982	1	2.7	19	1.6	11				
		R	3.5	24	2.6	18				

^{*} 著しく外挿した値

[†] Larson-Millerパラメータ値を補間して得た値

クリープおよびストレスラプチャー強度(続き)

ストレスラプチャー強度の比較

試験	温度		10,000 時間ラプチャー強度 (ksi*)							
°F	°C	HR-160 [®]	RA333 ®	800HT	RA330®	253 MA	RA85H	309	310	
1200	649	15.6	16.5	17.5	11	14	12	16	9.3	
1300	704	10.8	12	11	-	8.5	-	-	-	
1400	760	7.4	9.2	7.3	4.3	5.2	5	5.45	3.9	
1500	816	5.1	5.7	5.2	-	3.75	-	-	-	
1600	871	3.6	3.1	3.5	1.7	2.5	2.1	1.86	1.65	
1700	927	2.5	1.8	1.9	-	1.65	-	-	-	
1800	982	1.8	1.05	1.2	0.63	1.15	0.9	0.63	0.69	

試験	温度		100,000 時間ラプチャー強度 (ksi*)							
°F	°C	HR-160 ^{®**}	RA333 ®	800HT	RA330®	253 MA	RA85H	309	310	
1200	649	11	11.5	13	7.6	8.7	8	11.6	6.5	
1300	704	7.4	8.4	8	-	4.6	-	-	-	
1400	760	5	6.5	5.3	2.7	3.9	3.2	3.8	2.6	
1500	816	3.4	3.7	3.7	-	2.1	-	1	-	
1600	871	2.4	1.9	2.5	1	1.45	1.3	1.25	1.06	
1700	927	1.6	1.05	1.2	-	0.97	-	1	-	
1800	982	1.2	0.58	8.0	0.33	0.7	0.5	0.41	0.42	

^{*}ksiに6.895を乗ずることで MPa (メガパスカル) に変換できます。

^{**}外挿值

物理的特性

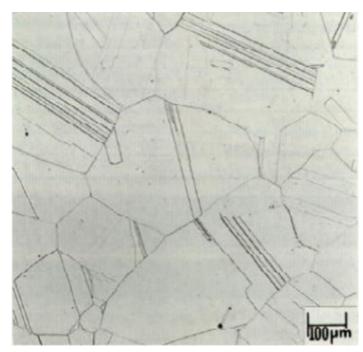
物理的特性	英	国単位	ا لح	トル単位
密度	RT	0.292 lb/in ³	RT	8.08 g/cm ³
	RT	43.8 µohm.in	RT	111.2 µohm.cm
	200°F	44.3 µohm.in	100°C	112.8 µohm.cm
	400°F	45.2 µohm.in	200°C	114.7 µohm.cm
	600°F	46.1 µohm.in	300°C	116.7 µohm.cm
	800°F	46.9 µohm.in	400°C	118.6 µohm.cm
	1000°F	47.8 µohm.in	500°C	120.6 µohm.cm
電気抵抗	1200°F	48.3 µohm.in	600°C	122.4 µohm.cm
	1400°F	48.6 µohm.in	700°C	123.1 µohm.cm
	1600°F	48.9 µohm.in	800°C	123.8 µohm.cm
	1800°F	49.3 µohm.in	900°C	124.5 µohm.cm
	2000°F	49.6 µohm.in	1000°C	125.2 µohm.cm
	2200°F	49.9 µohm.in	1100°C	125.9 µohm.cm
	-	-	1200°C	126.7 µohm.cm
	RT	4.6 10 ⁻³ in. ² sec.	RT	29.4 10 ⁻³ cm ² /sec.
	200°F	4.8 10 ⁻³ in. ² sec.	100°C	30.8 10 ⁻³ cm ² /sec.
	400°F	5.2 10 ⁻³ in. ² sec.	200°C	33.6 10 ⁻³ cm ² /sec.
	600°F	5.8 10 ⁻³ in. ² sec.	300°C	37.0 10 ⁻³ cm ² /sec.
	800°F	6.4 10 ⁻³ in. ² sec.	400°C	40.6 10 ⁻³ cm ² /sec.
	1000°F	7.0 10 ⁻³ in. ² sec.	500°C	44.3 10 ⁻³ cm ² /sec.
熱拡散率	1200°F	7.2 10 ⁻³ in. ² sec.	600°C	45.6 10 ⁻³ cm ² /sec.
	1400°F	7.4 10 ⁻³ in. ² sec.	700°C	47.2 10 ⁻³ cm ² /sec.
	1600°F	7.5 10 ⁻³ in. ² sec.	800°C	48.6 10 ⁻³ cm ² /sec.
	1800°F	7.8 10 ⁻³ in. ² sec.	900°C	48.7 10 ⁻³ cm ² /sec.
	2000°F	8.4 10 ⁻³ in. ² sec.	1000°C	50.9 10 ⁻³ cm ² /sec.
	2200°F	8.8 10 ⁻³ in. ² sec.	1100°C	54.1 10 ⁻³ cm ² /sec.
	-	-	1200°C	56.1 10 ⁻³ cm ² /sec.

RT= 室温

物理的特性(続き)

物理的特性	英	英国単位	メー	トル単位	
	RT	75 Btu.in/h.ft ² .°F	RT	10.9 W/m-°C	
	200°F	82 Btu.in/h.ft ² .°F	100°C	12.0 W/m-°C	
	400°F	95 Btu.in/h.ft ² .°F	200°C	13.6 W/m-°C	
	600°F	108 Btu.in/h.ft ² .°F	300°C	15.4 W/m-°C	
	800°F	126 Btu.in/h.ft ² .°F	400°C	17.6 W/m-°C	
	1000°F	144 Btu.in/h.ft ² .°F	500°C	19.9 W/m-°C	
熱伝導率	1200°F	162 Btu.in/h.ft ² .°F	600°C	21.8 W/m-°C	
	1400°F	178 Btu.in/h.ft ² .°F	700°C	24.7 W/m-°C	
	1600°F	185 Btu.in/h.ft ² .°F	800°C	26.1 W/m-°C	
	1800°F	196 Btu.in/h.ft ² .°F	900°C	26.9 W/m-°C	
	2000°F	213 Btu.in/h.ft ² .°F	1000°C	28.7 W/m-°C	
	2200°F	228 Btu.in/h.ft ² .°F	1100°C	31.1 W/m-°C	
	-	-	1200°C	32.9 W/m-°C	
	RT	0.110 Btu/lb.°F	RT	462 J/kg-°C	
	200°F	0.116 Btu/lb.°F	100°C	487 J/kg-°C	
	400°F	0.121 Btu/lb.°F	200°C	506 J/kg-°C	
	600°F	0.125 Btu/lb.°F	300°C	521 J/kg-°C	
	800°F	0.131 Btu/lb.°F	400°C	542 J/kg-°C	
	1000°F	0.136 Btu/lb.°F	500°C	562 J/kg-°C	
比熱	1200°F	0.151 Btu/lb.°F	600°C	597 J/kg-°C	
	1400°F	0.159 Btu/lb.°F	700°C	653 J/kg-°C	
	1600°F	0.165 Btu/lb.°F	800°C	672 J/kg-°C	
	1800°F	0.167 Btu/lb.°F	900°C	689 J/kg-°C	
	2000°F	0.171 Btu/lb.°F	1000°C	704 J/kg-°C	
	2200°F	0.175 Btu/lb.°F	1100°C	719 J/kg-°C	
	-	-	1200°C	732 J/kg-°C	
	78 - 200°F	7.2 μin./in°F	25 - 100°C	13.0 10 ⁻⁶ m/m-°C	
	78 - 400°F	7.6 μin./in°F	25 - 200°C	13.7 10 ⁻⁶ m/m-°C	
	78 - 600°F	7.9 μin./in°F	25 - 300°C	14.0 10 ⁻⁶ m/m-°C	
	78 - 800°F	8.1 μin./in°F	25 - 400°C	14.3 10 ⁻⁶ m/m-°C	
平均熱膨張係数	78 - 1000°F	8.3 μin./in°F	25 - 500°C	14.7 10 ⁻⁶ m/m-°C	
	78 - 1200°F	8.6 μin./in°F	25 - 600°C	15.5 10 ⁻⁶ m/m-°C	
	78 - 1400°F	8.9 μin./in°F	25 - 700°C	15.7 10 ⁻⁶ m/m-°C	
	78 - 1600°F	9.2 μin./in°F	25 - 800°C	16.6 10 ⁻⁶ m/m-°C	
	78 - 1800°F	9.5 μin./in°F	25 - 900°C	17.1 10 ⁻⁶ m/m-°C	

RT= 室温


物理的特性(続き)

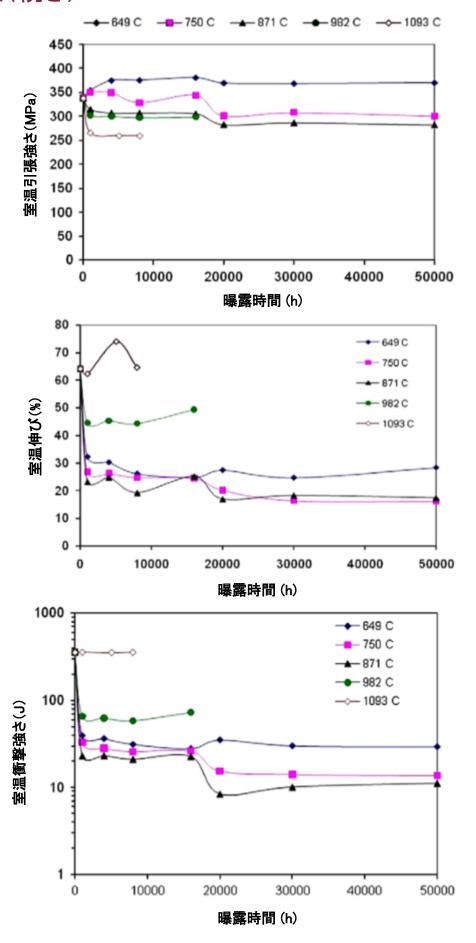
物理的特性	英国	単位	メート	ートル単位	
	RT	30.6 x 10 ⁶ psi	RT	211 GPa	
	100°F	30.5 x 10 ⁶ psi	50°C	210 GPa	
	200°F	30.1 x 10 ⁶ psi	100°C	207 GPa	
	300°F	29.6 x 10 ⁶ psi	150°C	204 GPa	
	400°F	29.1 x 10 ⁶ psi	200°C	201 GPa	
	500°F	28.6 x 10 ⁶ psi	250°C	198 GPa	
	600°F	27.8 x 10 ⁶ psi	300°C	193 GPa	
	700°F	27.1 x 10 ⁶ psi	350°C	189 GPa	
	800°F	26.5 x 10 ⁶ psi	400°C	185 GPa	
動弾性係数	900°F	26.1 x 10 ⁶ psi	450°C	182 GPa	
	1000°F	25.6 x 10 ⁶ psi	500°C	179 GPa	
	1100°F	25.1 x 10 ⁶ psi	550°C	176 GPa	
	1200°F	24.4 x 10 ⁶ psi	600°C	173 GPa	
	1300°F	23.7 x 10 ⁶ psi	650°C	168 GPa	
	1400°F	22.9 x 10 ⁶ psi	700°C	163 GPa	
	1500°F	22.4 x 10 ⁶ psi	750°C	159 GPa	
	1600°F	21.7 x 10 ⁶ psi	800°C	155 GPa	
	1700°F	21.1 x 10 ⁶ psi	850°C	151 GPa	
	1800°F	19.8 x 10 ⁶ psi	900°C	147 GPa	
	-	_	950°C	266 GPa	

RT= 室温

金属物性

形態	典型的なASTM結晶粒度	平均硬度
厚板	3 - 41/2	Rb 89
棒	2 - 3	Rb 85
薄板	3½ - 4½	Rb 88

アニールした状態のミクロ組織


この合金は、安定したオーステナイト構造を有しており、長期間の時効後に σ (シグマ)または μ (ミュー)相を示しません。例えば、1200、1400、1600 Γ (649、760、871 $^{\circ}$ C)で4000時間時効すると、 $Cr_{23}C_6$ とG相($Ni_{16}Ti_6Si_7$)が析出します。G相の形態は $Cr_{23}C_6$ の形態と非常に類似しています。従って、G相は、長期間時効した時に延性を低下させる炭化物よりも有害ではないと考えられます。この合金は、アニールされた状態および冷間加工された状態では非磁性です。

熱安定性

曝露	温度	曝露時間	0.2%	耐力	極限引	張強さ	4D伸び	AGL*伸び	絞り	衝擊	強さ
°F	°C	h	ksi	MPa	ksi	MPa	%	%	%	ft-lb	J
-	-	0	49	338	119.7	825	64.1	59.6	70.6	263	357
1200	649	1000	51.5	355	123.6	852	32.2	32.8	28.8	29	39
1200	649	4000	54.5	376	131.4	906	30.2	30	26.4	27	36
1200	649	8000	54.7	377	130.4	899	23.1	22.8	20	23	31
1200	649	16000	55.3	381	135.8	936	24.7	23.4	20.8	21	28
1200	649	20000	53.7	370	129.1	890	27.4	27.1	24.6	26	35
1200	649	30000	53.5	369	131.3	905	24.7	24.2	23.7	22	30
1200	649	50000	53.8	371	134.5	927	28.3	26.4	22.1	21	29
1400	760	1000	50.8	350	131.1	904	26.8	26.9	22.2	24	33
1400	760	4000	50.6	349	131.1	904	26.3	26.1	26	21	28
1400	760	8000	50	345	130.1	897	24.8	25.1	22.5	19	26
1400	760	16000	49.9	344	130.7	901	24.6	25	21.2	19	26
1400	760	20000	43.7	301	107.9	744	20.2	19.3	14	12	16
1400	760	30000	44.7	308	102.4	706	-	16.4	11.3	10	14
1400	760	50000	43.5	300	102.3	705	ı	16.2	12.4	10	13
1600	871	1000	45.7	315	114.6	790	23.2	23.8	20.8	17	23
1600	871	4000	44.5	307	114	786	24.8	25.1	20.5	17	23
1600	871	8000	44.7	308	114.9	792	24.8	25.3	22.6	15	21
1600	871	16000	44.4	306	115	793	25.2	25.9	22.2	16	22
1600	871	20000	41	283	88.6	611	17	17.2	15.1	6	8
1600	871	30000	41.6	287	89.9	620	18.3	18.1	15.3	7	10
1600	871	50000	40.9	282	86.2	594	17.4	17.6	14.5	8	11
1800	982	1000	43.9	303	119.1	821	44.6	44.9	39	49	66
1800	982	4000	43.7	301	117.5	810	45.3	44.5	39.2	46	63
1800	982	8000	43.2	298	115.3	795	44.4	43.6	38	44	59
1800	982	16000	43.4	299	114.3	788	49.4	48.5	42	54	73
2000	1093	1000	38.4	265	104.4	720	62.3	64.3	62.8	264	358
2000	1093	5065	37.6	259	99.5	686	74	72.1	65.4	263	357
2000	1093	8000	37.6	259	100.2	691	64.6	67.1	60.1	264	358

^{*}AGL は調整された標点距離のことで、AGL%伸びは引張破断の場合に有効です。

熱安定性(続き)

耐水溶液腐食性

応力腐食割れ

合金	割れ発生までの時間, h.			
HR-160 [®]	1000h	割れ無し		
C-22®	1000h	割れ無し		
825	150h	割れ発生		
316LSS	24h	割れ発生		

一様腐食

条件	年当たりの平均腐食速度, mils*				
米 性	HR-160 [®]	625	316L		
3% HCl + 59% HNO ₃ , 80°C	2	20	-		
1% HF + 20% HNO ₃ , 80°C	35	123	>400		
50% H ₂ SO ₄ + 10% HNO ₃ , 沸騰	20	-			
60% H ₂ SO ₄ +5% HNO ₃ , 沸騰	50	105	-		
65% HNO ₃ , 沸騰	9	20	12		
50% H ₂ SO ₄ + 42 g/l Fe ₂ (SO ₄)3 G-28A, 沸騰	9	24	38		
25% H ₂ SO ₄ + 5% HNO ₃ + 4% NaCl, 沸騰	3	713	-		
1% HCI, 沸騰	469	0.9	524		
1% HCl + 1% H ₂ SO ₄ + 1% HF, 79°C	107	120	245		

^{*}mils/年 (mpy) を mm/年 に換算するには、40 で除します。

溶接

HAYNES® HR-160® 合金は、ガスタングステンアーク溶接(TIG)およびガスメタルアーク溶接(MIG)で容易に溶接することができます。この合金の溶接特性の多くは、HASTELLOY®合金の溶接特性に類似しており、同じ注意事項が適用されます。サブマージアーク溶接は、このプロセスには熱入力が高いという特徴があり、ひずみや高温割れが発生する可能性があるため推奨できません。HR-160®溶加金属は、始端/終端割れを発生しやすい金属です。この溶加金属は、非常に拘束された条件下で厚いプレート(例えば、1/2インチ以上の厚さ)を溶接する場合、高温割れが生じやすいかも知れません。続けて溶接する前に、局所的な割れは研削して取り除く必要があります。溶接割れを再溶解または"ウォッシュアウト"することを試みないでください。

母材の準備

溶接作業の前に、接合面および隣接する領域を完全に清浄にしなければなりません。全ての潤滑剤、油、クレヨンの痕、硫黄化合物およびその他の異物は除去しなければなりません。溶接する場合、合金は溶体化処理された状態にあることが好ましいですが、必ずしも必要ではありません。

溶加金属の選定

HR-160® 合金の接合には、同一組成の溶加金属を使用することを推奨します。HR-160® 合金とステンレス鋼を接合するような、異種母材金属の接合には、HAYNES® 556® 溶加金属を推奨します。

予熱、パス間温度、および溶接後の熱処理

母材が 32°F(0°C)以上の温度で溶接される限り、予熱する必要はありません。パス間温度は、200°F(93°C)以下でなければなりません。汚染物質が混入することがないのであれば、必要に応じて、溶接パス間で補助冷却手段を使用することができます。通常、HR-160®合金には溶接後の熱処理は不要です。

標準溶接パラメータ

標準溶接パラメータは、典型的な溶接作業を実行するためのガイドとして提供されています。これらは、当社の実験室で使用されている溶接条件に基づいており、単なるガイドラインであると考えてください。詳細については、"溶接および加工"のパンフレットを参照してください。

0.375 in(9.5 mm)のHR-160® プレートを溶接して製作した大型レトルト

HR-160®合金溶接部の典型的なフェイス曲げ、ルート曲げおよびサイド曲げ。 プレートの厚さは 0.5 in (12.7 mm) で、曲げ半径は 1.0 in (25 mm)(板厚の2倍の曲げ半径)です。

溶接(続き)

AWM(全溶接金属) 引張

溶接タイプ	試験温度		極限引張強さ		0.2% 耐力		伸び
	°F	°C	ksi	MPa	ksi	MPa	%
	RT	RT	94.1	649	58.0	400	26.4
	500	260	81.9	565	45.8	316	25.2
GMAW	1000	538	71.3	492	42.8	295	32.4
	1400	760	43.2	298	33.7	232	29.6
	1600	871	22.7	157	17.6	121	33.3
	RT	RT	101.3	698	68.5	472	26.4
	500	260	81.7	563	47.2	325	32.1
GTAW	1000	538	70.4	485	42.8	295	43.7
	1400	760	46.3	319	34.4	237	30.0
	1600	871	22.6	156	18.1	125	72.2

全溶接金属試料

RT= 室温

溶接部の横方向引張

	試験温度		極限引張強さ		0.2% 耐力		伸び
Condition	°F	°C	ksi	MPa	ksi	MPa	%
	RT	RT	102.3	705	60.1	414	30.6
溶接したまま	500	260	82.9	572	49.5	341	32.0
	1000	538	75.3	519	47.1	325	39.5
	1400	760	45.4	313	31.3	216	26.3
	1600	871	23.6	163	18.6	128	33.9
時効処理*	RT	RT	98.7	680	52.8	364	18.1

GTAW 溶接部の横方向引張試料

RT= 室温

溶接部のクリープラプチャー

試験	温度	応	カ	1% クリープ寿命	5% クリープ寿命	ラプチャー寿命	伸び
°F	°C	ksi	MPa	h	h	h	%
1200	649	30.0	207	12.9	67.0	110.7	13.7
1400	760	18.0	124	5.0	13.1	29.2	22.0
1600	871	11.5	79	49.0	67.5	114.6	26.9
1700	927	6.0	41	61.0	94.0	152.4	33.9

^{*}試料は1600℃(871℃)で1000時間の時効処理

適合規格および基準

規格

HAYNES® HR-160® 合金					
(N12160)					
	SB 435/B 435				
薄板、厚板および帯板	P= 46				
	SB 572/B 572				
ビレット、ロッドおよび棒	B 472				
	P= 46				
被覆アーク溶接棒	-				
裸溶接棒およびワイヤ	SFA 5.14/ A 5.14 (ERNiCoCrSi-1				
	F= 46				
継目なしパイプおよびチューブ	SB 622/B 622				
一番日など、ペーク83なびフェーク	P= 46				
	SB 619/B 619				
溶接パイプおよびチューブ	SB 626/B 626				
	P= 46				
継手類	SB 366/B 366				
神	P= 46				
数造材 数造材	SB 564/B 564				
對 又是 177	P= 46				
DIN	No. 2.4880				
DIIA	NiCo29Cr28Si				
その他	ASME Code Case				
C 07 IE	No. 2385				

基準

HAYNES® HR-160® 合金						
(N12160)						
	Section I	-				
ASME		Class 1	-			
	Section III	Class 2	-			
		Class 3	-			
	Section IV	HF-300.2	-			
	Section VIII	Div. 1	1800°F (982°C) ^{1,2}			
		Div. 2	-			
	Section XII		-			
	B16.5		-			
	B16.34	-				
	B31.1	-				
	B31.3		-			

¹承認された材料形態: 厚板、薄板、棒、鍛造材、継手類、溶接パイプ/チューブ、継ぎ目無しパイプ/チューブ 2 ASME Code Case No. 2385

免責事項:

Haynes International, Inc. は、本パンフレットに記載されているデータの精度・正確性を保証するために妥当な努力を払っておりますが、データの精度、正確性、あるいは信頼性について、いかなる表明も保証もいたしません。すべてのデータは、一般的な情報のみであり、設計上のアドバイスを提供するものではありません。ここに開示されている合金特性は、主に Haynes International, Inc. によって行われた作業に基づいており、場合によっては公開文献の情報によって補足されているため、そのような試験の結果のみを示すものであり、保証最大値または最小値と考えてはなりません。実際の使用条件で特定の合金を試験して特定の目的に対する適合性を判断するのはユーザーの責任です。

特定の製品に含まれる特定の元素濃度とその潜在的な健康への影響については、Haynes International, Inc. が提供する安全データシートを参照してください。特記のない限り、すべての商標は Haynes International, Inc. が所有しています。