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High temperature chlorine contaminated environments may be encountered
in a number of modern industrial and energy conversion systems. Such
environments have been shown to be extremely severe from a corrosion
control standpoint. Rather little information is available on the
corrosion properties of alloys in these enviromments, and the bulk of this
information has been obtained in short term tests (24 hours or less). This
paper will report the results of a series of high temperature corrosion
tests performed on superalloys for periods up to 400 hours in an oxidizing
environment consisting of argon containing 20% oxygen and 0.25% chlorine at

900°C.
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Introduction

High temperature chlorine containing environments are among the most
severely corrosive enviromnments which can be encountered in industrial
processes. The behavior of metals and alloys in chlorinating environments
is not well known in spite of the increasing number of processes which
produci 2such environments, including the incineration of municipal
wastes~’“, the combustion of chlorine contaminated coal”, and waste heat
recuperation from chemical and metallurgical processes which nutilize
chlorine as a reactant.

The majority of the information which is readily available for high
tempe rature chlorine accelerated corrosion is based upon the results of
field tests in which the thermodynamic conditions producing the corrosion
are not well controlled, or short term (50 hours or less) laboratory
testss_g. Laboratory tests performed in pure C12 or HC1 are not likely to
adequ ately predict materials performance in mixed industrial enviromments
where additional oxidizing species such as oxygen and sulfur are also
present. Furthermore, recent experiments have shown that the kinetics of
chlorine accelerated corrosion reactions often do not follow regular linear
or parabolic rate laws, so that the extrapolation of the results of short
term experiments may lead to the overestimation or underestimation of the
extent of corrosion which is encountered in practice.

In this study, the performance of a number of commercial high
temperature alloys has been studied for periods up to 400 hours in an
environment consisting of argon containing 20% oxygen and 0.25% chlorine by
volume. These conditions were selected after earlier experiments
demonstrated that test coupons of several of the 811%?8 could not survive
400 hours of exposure to a more corrosive environment. 1

Apparatus and Procedures

The apparatus used in these tests has been described elsewhere, and is
shown schematically in Figure 111. It consists of a fused quartz reaction
tube, and a fused quartz rack from which the specimens are suspended.
Reactive gases were purified by passage through dessicant columns before
being mixed and supplied to the furmace through the center of the sample
rack. The gases are heated to the furnace temperature and distributed over
the cross section of the reaction tube by passing them through a bed of
packed, crumbled firebrick (Babcock and Wilcox K-30) at the bottom of the
reaction tube.

The sample rack was designed with a knowledge of the importance of
volatile corrosion product species in high temperature halogen corrosion.
The corrosive gas mixture travelled upwards through the furmace with a
superficial velocity of 1.5cm/sec. The samples were mounted at least 1 cm
apart on a plane orthogonal to the direction of flow of the gases to
prevent the inadvertant cross contamination of the specimens by gaseous or
liquid corrosion products. Volatile corrosiom products condensed on the
water cooled cap at the top of the furnace, while condensed corrosion
products either remained on the specimens or collected at the bottom of the
reaction tube.

Metal specimens were in the form of ome to two mm thick sheet cut into
square coupons approximately ome cm on a side. The compositions of the
alloys included in this study are shown in Table I. The metals were
supplied in the solution heat treated state with the exceptions of alloy
R-41 and alloy 263 which were in the fully heat treated condition. The
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Figure 1. Schematic diagram of apparatus used for long term tests of
high temperature alloys in chlorine containing environments.
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thirteen alloys were tested in groups of four with alloy R-41 included in
each group as a control to demonstrate the reproduceability of the
environments.

In each test, the alloys were suspended in the furnace and the furnace
was purged with argon before being heated to the test temperature. When
the desired temperature was reached, the corrosive gas mixture was allowed
to replace the argon and the enviromment was maintained for 50 hours. At
the end of 50 hours, the furnace was purged with argon again, and the
samples were <cooled, removed from the furnace, and weighed and
photographed. This procedure was repeated until the total time of exposure
was 400 hours. This test procedure therefore, produces long term exposure
with infrequent thermal cycling in which the temperature changes always
occur in an inert enviromment.

Weight Change Results and External Corrosion Products

The weight change behavior exhibited by the alloys exposed in each of
the four rums is illustrated in Figures 2 through 5 respectively. The
results show approximately linear decreases in mass for all of the alloys
with the exception of alloy 214 which shows a slight increase in mass
during the first 100 hours of exposure. This indicates that the principal
corrosion products in this enviromnment are volatile chloride species.
After each 50 hour period of exposure, deposits of chlorides were removed
from the water cooled cap at the top of the furnace. Especially large
amounts of deposits were found during test number 4 where several of the
alloys showed large decreases in mass. Only very small amounts of material
were found at the bottom of the furnace at the conclusions of the
experiments, indicating that the condensed corrosion proucts remained on
the specimens during cooling. The scale of corrosion products on the
specimens was very porous and friable, and some material was lost when the
specimens were handled during the weighing process. Figure 6 shows the
variation in the mass of the alloy R-41 specimens during each of the four
tests. The reproduceability of the change in mass with time for these
specimens is within 10%, and no significant effects of cross contamination
could be detected.

The linear decrease in the mass of the specimens with time observed in
these tests is consistent with the paralinear kinetics of corrosion
observed for high temperature alloys in a more corrosive enviromment and
for pure nickel and cobalt™“’ in the same enviromment in shorter term
tests. In this form of corrosiom, a scale of oxide corrosion products
forms on the metal specimens and is subsequently attacked by chlorine
leaving a porous, nomprotective scale. The period during which the mass
of the specimens increases with time is cnly a few hours long, and cannot
be distinguished in long term tests such as this onme.

The alloy which shows the least attack in this enviromment is alloy
214. This alloy contains the highest concentration of aluminum of any of
the alloys in this study, and forms an oxide scale which consists primarily
of aluminum oxide. INCONEL alloy No. 601, which contains a lower, but
still significant concentration of aluminum, showed substantially less
weight loss than alloy 600 which otherwise has a similar composition,
despite the fact that it does not fo rm a continuous alumina film. The
vapor pressure of A1C13 in equilibrium with A1203 and the test environment
is very low , and the A1203 rich scale which forms on alloy 214 appears to
prot ect the underlying nickel and chromium rich metal from attack. The
relatively poor peformance of the titanium oxide and chromium oxide forming
alloys in these tests indicates that these oxides are less effective in
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protecting the metals from chlorine.

The second ranking materials in terms of weight loss were the irom
base alloys: EAYNES alloy No. 556, alloy 800H, and 310 stainless steel.
Jron forms a more stable oxide than does either nickel or cobalt, and
therefore the vapor pressure of iron chloride is lower than that of nickel
or cobalt chloride in environments where the oxides are thermodynamically
stable., Figure 7 shows a scanning electron micrograph of the scale which
formed on HAYNES alloy No. 556 along with some representative semi-
quantitative analyses obtained by energy dispersive X-ray analysis. No
chlorine is detected in the corrosion product scale on the specimen which
consists largely of chromium oxide and contains outcropppings which are
enriched in tantalum and iron. The concentrations of both nickel and
cobalt in the scale are much lower than the corrosponding concentrations of
these elements in the base metal.

The allcys which are attacked most severely in this enviromment are
the cobalt and nickel based alloys which contain high concentrations of
tungsten or molybdenmum: notably HAYNES alloy No. 188, HASTELLOY alloy S,
HASTELLOY alloy C-276, and alloy No. 625. Both tungsten and molybenum form
stable oxychlorides which will have very high vapor pressures in this
environment. Figure 8 shows a scanning electron micrograph of the surface
of the HASTELLOY alloy S specimen at a position where a portion of the
oxide scale has spalled after removal from the furnace. Again, no chlorine
is detected in the corrosion product scale. The composition in region 1,
where the scale had spalled to reveal the underlying metal, is very close
to the nominal composition of the alloy. The oxide scale in regioms 2 and
3 is enriched in chromium and iron, depleted in nickel, and contains
virtualy no molybdenum,.

Internal Penetration and Total Corrosive Attack

At the conclusion of the 400 hours of exposure, all of the specimens
were sectioned and mounted for metallographic examination. Figure 9 shows
cross sectional views of several of the alloys. Each photograph ha s been
cropped to the original thickness of the metal specimen, so that the
distance between the exterior surface of the specimen in the figure and the
outside of the photograph corresponds to the metal loss by oxidat ion and
volatilization. The attack occurs by uniform metal wastage, by pitting
attack, and by internal attack. The specimen of alloy 625 shows a clear
example of metal wastage, with only minimal internal attack very near the
corroding interfaces. The specimen of INCONEL alloy 601 shows primarily
pitting type attack along with somewhat more severe intermal attack
concentrated along the grain boundaries. The specimen of HAYNES alloy No.
188 shows very severe uniform attack as well as internal attack which
penetrates through to the center of the specimen. The specimen of alloy
214 shows virtuvally no uniform metal wastage with all of the attack
occurring along the grain boundaries.

The metallographic exmaminations revealed substantial internal attack
in nearly all of the specimens. The degree of internal pemnetration varied
from one alloy to another, and was often least severe in the alloys which
showed the most severe metal loss attack. Figure 10 shows the total depth
of metal affected by corrosion after 400 hours of exposure to the
environment for all of the alloys included in the study. The metal wastage
for each specimen is indicated by the dotted line on the bar graph, while
the end of the bar imicates the average depth of penmetration of the
internal attack. No depth of internal attack could be determined for alloy
188 because the internal attack penetrated through the center of the
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Figure 7. Corrosion product scale formed on alloy 556 after 400 hours
of exposure. Semi-quantitative energy dispersive X-ray analyses.

Position %A1 %Co %Cr %Fe %Nb %Ni %Ta %W
1 0:.23 0.03 43,25 13.95 1.58 3.49 36.38 0.98
2 0.09 0.04 80.89 5.95 0.42 1.56 1.11 9.89
3 0.07 0.04 94,93 2.06 0.17 0.35 2.09 -

Figure 8. External surface of alloy S specimen after 400 hours of ex-
posure showing region of spalled oxide. Semi-quantitative X-ray analyses.

Position %Al %Cr %Fe %Mo %Ni %Si
1 0.18 17.02 1.04 10.66 70.68 0..39
2 032 59.24 17.92 0.44 19.48 2.54
3 0. 53.20 16.35 0.84 24.63 0.39
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specimen. CABOT alloy number 214 shows the best performance followed by
the iron based alloys, and the alloys which are high in refractory metals
show the most severe attack.

Figure 11 shows a scanning electron micrograph from a region of the
cross section of the INCONEL alloy No 601 specimen near the surface where
the internmal attack can be seen clearly. The metal near the corroded
surface is depleted of aluminum and chromium. The internal attack appears
as open porosity, but the possibility that the attack occurs by internal
formation of condensed chlorides canmnot be ruled out because the samples
were prepared by wet polishing, and the chlorides could have dissolved
during polishing. The oxide scale on the specimen is rich in aluminum and
chromium, and a small amount of chlorine can be detected in region 2
between the scale and the metal.

The scale which forms on INCONEL alloy No. 601 is not sufficiently
protective to prevent the volatilization of chloride species from the
specimen. CABOT alloy No. 214, which does contain sufficient aluminum to
reduce the rate cf volatilization from the specimen, is also subject to
internal attack zs shown in Figure 12. The oxide scale is rich in A1203
and the metal near the surface is depleted in aluminum. The region of
internal attack is also enriched in aluminum, suggesting that both internal
chloridation and internal oxidation may be occurring.

Summary and Conclusions

1. Long term experiments on the corrosion of high temperature alloys in
oxygen—-chlorire enviromments generally confirm the trends observed in
shorter term experiments.

2. Corrosion occurs by two mechanisms in this emvironment: Metal loss by
formation of volatile chlorides and oxychlorides and intermal attack.

3. CABOT alloy No. 214, which forms an aluminum oxide protective scale,
shows the least corrosion in this envirnment, followed by the iron
based alloys HAYNES alloy No. 556, 310 stainless steel, and alloy 800H.
Alloys which sre high in refractory metals, including HAYNES alloy No.
188, alloy 625, and HASTELLOY alloys S and C-276, experience the most
severe corrosion in this enviromment, presumeably because of the
formation of volatile refractory metal oxychlorides.
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