HASTELLOY® X 合金

主な特徴

頑強で耐酸化性

HASTELLOY® X 合金 (UNS N06002 (W86002) は、耐酸化性、加工性および高温強度の類を見ない組み合わせを有するニッケル – クロム – モリブデン合金です。この合金は、また、石油化学用途における応力腐食割れに対して並外れた耐性があることが判明しています。 X 合金は、1200、1400、1600 $^{\circ}$ (649、760、871 $^{\circ}$ C)の温度に16,000時間の長時間曝した後でも良好な延性を示します。

容易な加工

HASTELLOY® X 合金は優れた成形および溶接特性を備えています。この合金は、部材全体が2150℃(1177℃)に達するのに十分な時間この温度で保持するのであれば、鍛造または熱間加工することができます。延性が良好であることから、HASTELLOY® X 合金は冷間加工でも容易に成形できます。最良の特性バランスを回復させるためには、熱間または冷間加工したすべての部品はアニールし、急冷する必要があります。

この合金は、ガスタングステンアーク溶接(GTAW)、ガスメタルアーク溶接(GMAW)、シールドメタルアーク溶接(SMAW)、および抵抗溶接などの様々な技法で溶接することができます。

加工に関する追加の情報は、"溶接および加工"のパンフレットに記載されています。

熱処理

鍛造形態のHASTELLOY® X 合金は、特に指定がなければ、溶体化処理した状態で提供されます。X 合金は、典型的には 2150℃ (1177℃)で溶体化処理されて急冷されます。ブライトアニール製品は水素で冷却されます。溶体化処理温度よりも低い温度でのアニーリングは、合金の強度と延性に悪影響するかもしれない第二相を析出する可能性があります。

航空機、炉および化学プロセス部品に有用

X 合金は、アフターバーナ、テールパイプ、キャビンヒータに使用されるだけでなく、ガスタービンエンジンにおいて、尾筒、燃焼器内筒、スプレーバー、フレームホルダーなどの燃焼ゾーン部品に幅広く使用されています。この合金は、酸化、還元および中性雰囲気に対して並外れた耐性を有しているため、工業炉用途に使用することが推奨されます。この合金製の炉ロールは、2150°F(1177°C)で8,700時間運転した後でも良好な状態でした。HASTELLOY® X 合金は、化学プロセス産業において、レトルト、マッフル、触媒支持格子、炉のバッフル、熱分解作業のための配管、およびフラッシュドライヤ部品にも使用されています。

適合規格

HASTELLOY® X は ASME Section VIII, Division 1で網羅されています。厚板(プレート)、薄板 (シート)、帯板、棒(バー)、鍛造材、チューブ、パイプおよび継手類は、ASME 規格の SB 366、SB 435、SB 572、SB 619、SB 622、および SB 626 並びに ASTM 規格の B 366、B 435、B 572、B 619、B 622、および B626 で網羅されています。この合金の UNS番号は、N06002 です。DINの呼称は No. 2.4665 および NiCr22Fe18Mo です。薄板、帯板、および厚板は、AMS 5536 で網羅されており、ビレットおよび棒は AMS 5754 で網羅されています。

標準組成

重量%

- NP	47 Balance
ニッケル:Ni	47 Dalance
クロム:Cr	22
鉄:Fe	18
モリブデン:Mo	9
コバルト:Co	1.5
タングステン:W	0.6
炭素:C	0.1
マンガン:Mn	1 max.
ケイ素:Si	1 max.
ホウ素:B	0.008 max.
ニオブ:Nb	0.5 max.
アルミニウム:Al	0.5 max.
チタン:Ti	0.15 max.

クリープおよびストレスラプチャー強度

薄板の最小クリープ速度*

=- } €-	泪曲	%/hで示した最小クリープ速度に対する平均応力									
試験温度		0.00	0.0001 h		0.001 h		0.01 h		l h		
°F	°C	ksi	MPa	ksi	MPa	ksi	MPa	ksi	MPa		
1200	649	14.7	101	21	145	31	214	44	303		
1400	760	7.2	50	10	69	14	97	19.5	134		
1600	871	2.7	19	4.1	28	6.2	43	9.2	63		
1800	982	0.7	5	1.3	9	2.2	15	3.7	26		
2000	1093	-	-	-	-	-	-	0.9	6		

^{*}溶体化処理済。薄板に対しては100回以上、厚板及び棒材に対しては150回以上の試験に基づいたデータ。

クリープおよびストレスラプチャー強度(続き)

溶体化処理した HASTELLOY® X 厚板

28	ric .	A11 -	下	記時間で	で所定の	クリープを	生生じるお	およその)初期応:	カ :
温	.度	クリープ	10) h	10	0 h	1,00	00 h	10,0	00 h
°F	°C	%	ksi	MPa	ksi	MPa	ksi	MPa	ksi	MPa
		0.5	-	-	27.2	188	19	128	12.8	88
1200	649	1	-	-	30	207	21	145	15.5	107
		R	65*	448*	50	345	36	248	26	179
		0.5	25	172	16.2	112	11.1	77	8.2	57
1300	704	1	27	186	19	131	14	97	10.5	72
		R	46	317	32	221	23	159	17	117
		0.5	15	103	10.3	71	7.5	52	5.6	39
1400	760	1	18	124	13	90	9.5	66	7.1	49
		R	30	207	21	146	15.5	107	11.5	79
		0.5	9.9	68	7.2	50	5.3	37	3.85	27
1500	816	1	12.5	86	9.1	63	6.7	46	4.7	32
		R	21	141	15	103	10.5	72	7.2	50
		0.5	7	48	5.1	35	3.7	26	2.4	17
1600	871	1	8.9	61	6.4	44	4.5	31	2.9	20
		R	15	100	10	69	6.8	47	4.5	31
		0.5	5.1	35	3.6	25	2.3	16	1.3	9
1700	927	1	6.4	44	4.4	30	2.7	19	1.5	10
		R	10	69	6.6	46	4.3	30	2.6	18
		0.5	3.6	25	2.3	16	1.25	8.6	0.55	3.8
1800	982	1	4.4	30	2.7	19	1.45	10	0.65	4.5
		R	6.7	46	4.3	30	2.6	18	1.4	10
		0.5	2.4	16	1.3	9	0.55	3.8	-	ı
1900	1038	1	2.8	19	1.5	10	0.65	4.5	-	-
		R	4.3	30	2.6	18	1.4	10	-	-
		0.5	1.4	10	0.6	4.1	0.15*	1.0*	-	-
2000	1093	1	1.6	11	0.7	4.8	0.20*	1.4*	-	-
		R	2.7	19	1.4	10	0.60*	4.1*	-	_

^{*}著しく外挿した値

クリープおよびストレスラプチャー強度(続き)

溶体化処理した HASTELLOY® X 薄板

28	de	A 11 3	下	記時間で	で所定の	クリープを	生じるお	およその	初期応え	ታ :
温	度	クリープ	10	h	10	0 h	1,00	00 h	10,0	00 h
°F	°C	%	ksi	MPa	ksi	MPa	ksi	MPa	ksi	MPa
		0.5	-	-	26	178	18	124	-	-
1200	649	1	-	-	28	193	21	145	-	-
		R	66*	455*	48	331	35	241	26	179
		0.5	23.5	162	16	112	12	83	-	-
1300	704	1	26	179	19	131	14	97	-	-
		R	44	303	32	221	23	159	17	117
		0.5	15	103	11	76	8.1	56	-	-
1400	760	1	18	124	13	90	9.5	66	7.1	49
		R	30	207	21	146	16	107	11.5	79
		0.5	10.5	72	7.7	53	5.4	37	-	1
1500	816	1	12.5	86	9.1	63	6.5	45	4.3	30
		R	21	141	15	103	11	72	7.2	50
		0.5	7.5	52	5.1	35	3.2	22	-	-
1600	871	1	8.9	61	6.2	43	3.9	27	2.3	16
		R	15	100	10	69	6.8	47	4.2	29
		0.5	5.1	35	3.1	21	1.5	11	-	-
1700	927	1	6.2	43	3.8	26	2.2	15	1.1*	7.2*
		R	10	69	6.6	46	4	28	2.4	17
		0.5	3.1	21	1.5	11	0.48	3.3	-	-
1800	982	1	3.8	26	2.2	15	1	6.9	0.33*	2.3*
		R	6.7	46	4	28	2.3	16	1.2	8.3
		0.5	1.6	11	-	-	-	-	-	-
1900	1038	1	2.2	15	1	6.9	0.33*	2.3*	-	-
		R	4.1	28	2.4	17	1.2	8.3	-	-
		0.5	0.62	4.3	-	-	-	-	-	-
2000	1093	1	1.1	7.6	0.35	2.4	0.10*	0.69*	-	-
		R	2.5	17	1.3	8.6	0.4	2.8	-	-

^{*}著しく外挿した値

引張特性

引張データ, 厚板

試験	温度	0.2% 耐力		.2% 耐力 極限引張引		0.2% 耐力 極限引張強さ		伸び
°F	°C	ksi	MPa	ksi	MPa	%		
70	21	49.3	340	110.2	760	48.9		
1000	538	32.5	224	87.6	604	60.2		
1200	649	30.7	212	80.9	558	63.5		
1400	760	31.6	218	61	421	74.5		
1600	871	27.4	189	37	255	98.1		
1800	982	13.6	94	20	138	98.1		
2000	1093	6.5	45	10.4	72	95.3		

引張データ, 薄板

試験	温度	0.2%	耐力 極限引張強		0.2% 耐力 極限引張強		張強さ	伸び
°F	°C	ksi	MPa	ksi	MPa	%		
70	21	54.5	376	113.5	783	46.5		
1000	538	36.7	253	91	628	53.6		
1200	649	34.9	241	84.2	580	65.5		
1400	760	33.8	233	61.6	424	95.6		
1600	871	28	193	36.5	251	117.9		
1800	982	12.8	88	18.9	130	81.5		
2000	1093	6.2	43	9.5	65	50.6		

極低温での引張特性に対する平均的な影響

形態	形態 条件		試験温度		0.2% 耐力		張強さ	伸び
j j		°F	°C	ksi	MPa	ksi	MPa	%
	2150°F(1177°C) 享板 で熱処理して急冷	-196	-321	-	-	150.2	1036	46
厚板		-78	-108	-	-	118.8	819	51
	て派を全して心川	22	72	47	324	104.5	721	46

引張特性(続き)

時効後の平均引張データ、室温*

形態	時効	温度	時効時間	0.2%	耐力	極限引	張強さ	伸び
	°F	°C	h	ksi	MPa	ksi	MPa	%
薄板	SHT	SHT	-	55.2	381	114.3	788	57
		649	1000	61	421	125	862	35
	1200		4000	76.2	525	143.8	991	19
	1200	049	8000	78.6	542	147.9	1020	19
			16000	78.1	538	148	1020	15
薄板			1000	65.3	450	137	945	23
	1400	760	4000	64.3	443	134.6	928	18
板厚:0.125 in.	1400	760	8000	61.3	423	131	903	19
(3.2mm)			16000	59.3	409	126.1	869	17
			1000	53.2	369	123	848	26
	1600	871	4000	49.3	340	117.9	813	29
	1000		8000	48.2	332	115	793	30
			16000	46.1	318	111.1	766	29
	SHT	SHT	-	49.5	341	109.9	758	47
			1000	56.5	390	121.4	837	33
	1200	649	4000	73.4	506	142.5	983	18
E-1-			8000	73	503	143.6	990	18
厚板			1000	56.9	392	129.4	892	23
板厚:1/2 in.	1400	760	4000	56.9	392	129.9	896	21
(12.7mm)			8000	56.3	388	129.2	891	20
			1000	47.6	328	119	820	31
	1600	071	4000	44.9	310	116.7	805	28
	1600	00 871	8000	43.9	303	113.7	784	26
			16000	42.7	394	109	752	26

^{*}各形態に対する試験データは単一のヒートから得た。 SHT=溶体化処理済(時効なし)。

物理的特性

物理的特性	-	E国単位	٠,	ートル単位
密度	72°F	0.297 lb/in ³	22°C	8.22 g/cm ³
溶融温度	2300	0 - 2470 °F	126	0 - 1355°C
	75°F	45.21 μohm-in	24°C	114.83 µohm-cm
	100°F	45.38 μohm-in	38°C	115.27 µohm-cm
	200°F	45.89 μohm-in	94°C	116.56 µohm-cm
	300°F	46.31 µohm-in	149°C	117.63 µohm-cm
	400°F	46.78 µohm-in	205°C	118.82 µohm-cm
	500°F	47.20 μohm-in	260°C	119.88 µohm-cm
	600°F	47.53 μohm-in	316°C	120.73 µohm-cm
	700°F	47.93 μohm-in	371°C	121.73 µohm-cm
	800°F	48.23 μohm-in	427°C	122.51 µohm-cm
	900°F	48.61 µohm-in	483°C	123.46 µohm-cm
電気抵抗	1000°F	49.00 μohm-in	538°C	124.46 µohm-cm
	1100°F	49.38 µohm-in	594°C	125.44 µohm-cm
	1200°F	49.53 µohm-in	649°C	125.81 µohm-cm
	1300°F	49.61 µohm-in	705°C	126.02 µohm-cm
	1400°F	49.68 µohm-in	760°C	126.20 µohm-cm
	1500°F	49.73 μohm-in	816°C	126.32 µohm-cm
	1600°F	49.80 μohm-in	871°C	126.50 µohm-cm
	1700°F	49.81 µohm-in	927°C	126.52 µohm-cm
	1800°F	49.67 µohm-in	983°C	126.17 µohm-cm
	1900°F	49.59 μohm-in	1038°C	125.96 µohm-cm
	2000°F	49.57 μohm-in	1094°C	125.90 µohm-cm
	70°F	63 Btu-in/ft.2h-°F	25°C	9.2 W/m-°C
	200°F	76 Btu-in/ft.2h-°F	100°C	11.2 W/m-°C
	500°F	98 Btu-in/ft.2h-°F	200°C	14.1 W/m-°C
	1100°F	144 Btu-in/ft.2h-°F	600°C	20.9 W/m-°C
 熱伝導率	1200°F	151 Btu-in/ft.2h-°F	650°C	21.9 W/m-°C
がは金子	1300°F	159 Btu-in/ft.2h-°F	700°C	22.8 W/m-°C
	1400°F	166 Btu-in/ft.2h-°F	750°C	23.8 W/m-°C
	1500°F	174 Btu-in/ft.2h-°F	800°C	24.7 W/m-°C
	1600°F	182 Btu-in/ft.2h-°F	850°C	25.7 W/m-°C
	1700°F	189 Btu-in/ft.2h-°F	900°C	26.7 W/m-°C

RT= 室温

物理的特性(続き)

物理的特性	英	国単位	- لا	トル単位
	RT	0.116 Btu/lb°F	RT	486 J/kg-°C
	200°F	0.117 Btu/lb°F	100°C	487 J/kg-°C
	400 °F	0.118 Btu/lb°F	200°C	484 J/kg-°C
	600°F	0.119 Btu/lb°F	300°C	491 J/kg-°C
	800°F	0.123 Btu/lb°F	400°C	507 J/kg-°C
比熱	1000°F	0.130 Btu/lb°F	500°C	531 J/kg-°C
	1200°F	0.139 Btu/lb°F	600°C	564 J/kg-°C
	1400°F	0.151 Btu/lb°F	700°C	606 J/kg-°C
	1600°F	0.167 Btu/lb°F	800°C	657 J/kg-°C
	1800°F	0.186 Btu/lb°F	900°C	716 J/kg-°C
	2000°F	0.205 Btu/lb°F	1000°C	784 J/kg-°C
	79 - 200°F	7.7 µin/in°F	26 - 100°C	13.9 10 ⁻⁶ m/m-°C
	79 - 1000°F	8.4 µin/in°F	26 - 500°C	15.0 10 ⁻⁶ m/m-°C
	79 - 1200°F	8.6 µin/in°F	26 - 600°C	15.3 10 ⁻⁶ m/m-°C
	79 - 1350°F	8.8 µin/in°F	26 - 700°C	15.7 10 ⁻⁶ m/m-°C
平均熱膨張係数	79 - 1400°F	8.9 µin/in°F	26 - 750°C	15.9 10 ⁻⁶ m/m-°C
	79 - 1500°F	8.9 µin/in°F	26 - 800°C	16.0 10 ⁻⁶ m/m-°C
	79 - 1600°F	9.1 μin/in°F	26 - 850°C	16.2 10 ⁻⁶ m/m-°C
	79 - 1650°F	9.1 μin/in°F	26 - 900°C	16.4 10 ⁻⁶ m/m-°C
	79 - 1800°F	9.2 μin/in°F	26 - 975°C	16.6 10 ⁻⁶ m/m-°C
	RT	29.8 x 10 ⁶ psi	RT	205 GPa
	200°F	29.4 x 10 ⁶ psi	100°C	202 GPa
	400°F	28.6 x 10 ⁶ psi	200°C	198 GPa
	600°F	27.8 x 10 ⁶ psi	300°C	192 GPa
動弾性係数	800°F	26.7 x 10 ⁶ psi	400°C	187 GPa
33 T I I I I I I I I I I I I I I I I I I	1000°F	25.8 x 10 ⁶ psi	500°C	180 GPa
	1200°F	24.7 x 10 ⁶ psi	600°C	173 GPa
	1400°F	23.3 x 10 ⁶ psi	700°C	165 GPa
	1600°F	22.2 x 10 ⁶ psi	800°C	157 GPa
	1800°F	20.4 x 10 ⁶ psi	900°C	148 GPa
ポアソン比	-108°F	0.328	-78 °C	0.328
ハノノル	72°F	0.32	22 °C	0.32
透磁率	RT	200 エルスラ	テッドで 1.002	(15,900 A/m)

硬さおよび結晶粒サイズ

2150℃(1177℃)で溶体化処理した材料の室温硬さ

形態	硬さ, HRBW	典型的な ASTM 結晶粒度
薄板	86	3 - 5
厚板	87	3.5 - 6
棒	88	2 - 5

HRBW = ロックウェル硬さ "B"、タングステン球圧子。

時効後の硬度

室温での時効後硬度*

TZ 삼년	時効	温度	時効時間	硬さ
形態	°F	°C	h	HRBW
	SHT	SHT	-	54
			1000	56
	1200	649	4000	62
			8000	63
薄板			1000	62
	1400	760	4000	61
			8000	60
			0	61
	1600	871	4000	58
			8000	55
	SHT	SHT	-	54
	1200	649	1000	57
			4000	62
			8000	63
厚板	1400	760	1000	60
			4000	59
			8000	58
			1000	56
	1600	871	4000	56
			8000	54
			1000	64
	1200	649	4000	65
			8000	63
			1000	62
全溶接金属**	1400	760	4000	60
			8000	60
			1000	56
	1600	871	4000	55
			8000	54

SHT=溶体化処理済(時効なし)。

HRBW = ロックウェル硬さ "B"、タングステン 圧子。

^{*}各形態に対して単一ヒートから採取したサンプルの試験。

^{**}ガスタングステンアークで溶接。

成形性

薄板

条 件	典型的なオルセンカップ深さ				
采竹	in.	mm			
2150℃(1177℃)で熱処理して急冷	0.48	12.3			

衝擊強度

平均衝擊強度、厚板*

条件	試験温度	平均シャルピー V-ノッチ 衝撃強さ		
		ft lb.	J	
2100㎡ (1149℃)で熱処理して水冷	RT	103	140	

^{*}板厚が 0.413" - 1.25" (10.5 - 31.8 mm) の複数のヒートから採取した28のサンブルの平均値で、2007 - 2014の間に試験を実施。

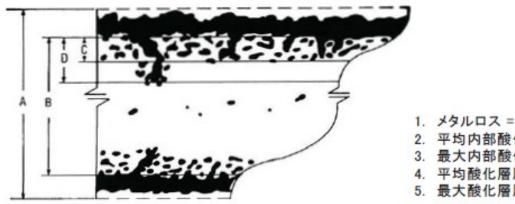
時効処理した厚板*

時効温度		時効時間	平均シャルピー V-ノッチ衝撃強さ		
°F	°C	h	ftlb.	J	
SHT	SHT	-	95	129	
		1000	24	33	
1200	649	4000	12	16	
		8000	15	20	
		1000	10	14	
1400	760	4000	10	14	
		8000	8	11	
		0	15	20	
1600	071	4000	12	16	
1600	871	8000	15	20	
		16000	12	16	

SHT=溶体化処理済(時効なし)。

^{*}単一のヒートから採取した厚さ 1/2 in. (12.7 mm) の厚板に対する4回の試験の平均値。

耐酸化性


空気流中で1008 時間*曝露した時の静的酸化データの比較

		1800°F	(982°C)		2000°F (1093°C)				
合金	メタルロス/片側		メタルロス + CIP**/片側		メタルロス/片側		メタルロス + CIP**/片側		
	mils	mm mils mm		mils	mm	mils	mm		
X	0.29	0.007	0.74	0.019	1.5	0.038	2.7	0.069	
INCONEL® 600	0.32	0.008	0.9	0.023	1.1	0.028	1.6	0.041	
INCONEL® 601	0.53	0.013	1.3	0.033	1.2	0.031	2.6	0.06	
625	0.32	0.008	0.72	0.018	3.3	0.083	4.8	0.12	
800H®	0.024	0.024	1.8	0.046	5.4	0.137	7.4	0.19	

^{*1}週間に1回、室温まで冷却するサイクルの繰り返し。

INCONEL は Special Metals Corporationの登録商標です。

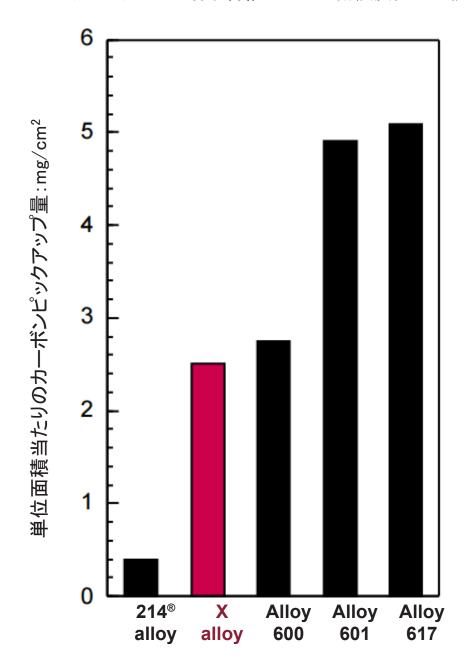
酸化試験の評価に使用した金属組織学的手法の模式図

- 1. メタルロス = (A-B)/2
- 2. 平均内部酸化深さ = C
- 3. 最大内部酸化深さ = D
- 4. 平均酸化層厚さ = ((A-B)/2) + C
- 5. 最大酸化層厚さ = ((A-B)/2) + D

平均耐高温腐食性の比較*

-1 €-	—————————————————————————————————————	=-+ F->-n+===			総腐食層	厚さ/片側		
試験		試験時間	X		S		188	
°F	°C	h	mils	mm	mils	mm	mils	mm
1650	900	200	3	0.08	2.7	0.07	2.1	0.05
1650	900	1000	6.8	0.17	7.5	0.19	3.7	0.09

^{*}全ての試験は、No.2燃料油(0.4%硫黄を含む)と5ppmの海塩の燃焼生成物に曝露することにより 行いました。試料を通過するガスの速度は13ft/secでした。1時間に1回の周期で熱衝撃を加えま した。


^{**}CIP=連続的な内部酸化。

耐浸炭性

試験は、(容積%)で5.0% H_2 、5.0% CO、5.0% CH_4 及び残りはアルゴンの入口ガス混合物を伴った 浸炭環境において行いました。1800F(982 $^{\circ}$ C)での計算による酸素ポテンシャルおよび炭素活性 は、それぞれ 9×10^{-22} atm および 1.0 でした。

結果は、式 M = C(W/A) から得られる単位面積当たりのカーボンピックアップ質量で示されます。ここで、M = 単位面積当たりのカーボンピックアップ質量(mg/cm²)、<math>C = 曝露前後の炭素量(重量分率)の差、W = 曝露されていない試験片の重量(mg)および A = 試験環境に曝露された試験片の表面積(cm²)です。

1800♀(982℃)で 55 時間曝露したときの耐浸炭性の比較

溶接

HASTELLOY® X 合金は、ガスタングステンアーク溶接 (GTAW)、ガスメタルアーク溶接 (GMAW)、シールドメタルアーク溶接 (SMAW)、および抵抗溶接で容易に溶接することができます。サブマージアーク溶接 (SAW) は、この溶接プロセスが母材金属への入熱が高く、溶接部の冷却が遅いという特徴を有しているため、お薦めできません。これらの要因は、溶接による拘束を高め、割れを促進する可能性があります。

母材金属の準備

溶接作業の前に、溶接面および隣接する領域を適切な溶剤を用いて完全に清浄にする必要があります。グリース、オイル、切削油、クレヨンの痕、機械加工溶液、腐食生成物、塗料、スケール、染色浸透探傷溶液、およびその他の異物はすべて完全に除去しなければなりません。溶接時に合金が溶体化処理されていることが好ましいですが、必ずしも必要ではありません。

溶加金属の選定

X 合金をガスタングステンアークまたはガスメタルアーク溶接で接合する場合は、HASTELLOY® X 溶加ワイヤ (AWS A5.14, ERNiCrMo-2) を推奨します。非ASME規格構造物のシールドメタルアーク溶接には、X 合金の被覆アーク溶接棒もあります。X 合金とニッケル基、コバルト基、あるいは鉄基材料との異種金属の接合には、個々のケースに応じて、X 合金溶加ワイヤ、HAYNES® 556® 合金 (AWS A5.9 ER3556, AMS 5831)、HASTELLOY® S 合金 (AMS 5838) あるいは HASTELLOY® W 合金 (AMS 5786, 5787) などの溶接製品全てが考慮対象となります。さらなる情報が必要な場合は、ウェブサイト (haynesintl.com) にある "溶接および加工" のパンフレットをご覧になるか、Haynes Welding SmartGuideをご利用ください。

予熱、パス間温度および溶接後熱処理

予熱は必要ありません。予熱は、通常、室温(典型的な作業環境条件)として指定されています。パス間温度は、200°F(93°C)以下に維持しなければなりません。汚染物を取り込むことがないのであれば、必要に応じて、溶接パス間に補助冷却手段を使用することができます。X 合金に対しては、溶接後の熱処理は、通常、必要ありません。更なる情報が必要な場合は、ウェブサイト(haynesintl.com)にある"溶接および加工"のパンフレットを参照してください。

標準溶接パラメータ

GTAW、GMAW および SMAW 溶接に対する詳細は、"溶接および加工" のパンフレットに記載されています。標準溶接パラメータは、典型的な溶接作業を実行するためのガイドとして提供しており、当社の実験室で使用されている溶接条件に基づいています。

National Association Inc.	、た薄板の宰温硬度	•
·淡 上生 I	T~:面劢(/) 茶:品烟 医	•
77777	// /==1/11 U/ == /III UV / U	

溶接方法	試験領域	HRB
> u i / / b u = 2	溶接領域	92
シールドメタルアーク	熱影響領域	93
(被覆アーク溶接棒)	母材金属	91
1 - 4 · 4 · - · - ·	溶接領域	89
ガスタングステンアーク (TIG)	熱影響領域	93
(TIG)	母材金属	91
**************************************	溶接領域	90
ガスメタルアーク (MIG)	熱影響領域	93
	母材金属	91

注記: 薄板は溶接前に溶体化処理。硬度は、室温で溶接したままの状態で測定。 HRB = ロックウェル硬さ "B"。

溶接(続き)

平均短時間引張データ,冷間圧延して溶接した 0.109 in. (2.8 mm) の薄板

条件	形態	0.2% 耐力		極限引張強さ		
		ksi	MPa	ksi	MPa	
	圧下率 5%	82	565	123	848	
冷間圧延したまま	圧下率 15%	106	731	137	945	
	圧下率 30%	137	945	161	1110	
冷間圧延および溶接、	圧下率 5%	68	469	114.9	792	
が同圧延のよび浴接、 溶接したまま	圧下率 15%	72.1	497	113.1	780	
万分女	圧下率 30%	69.9	482	112.9	778	

注記:全ての冷間圧延した薄板および種々の溶接サンプルは、冷間圧延または溶接の前に溶体化処理された材料から作成しました。すべてのデータは室温で得られ、限られた回数の試験の結果です。

平均引張データ, 溶接部

条件	溶接方法	材料	0.2%	耐力	極限引	張強さ	伸び
			ksi	MPa	ksi	MPa	%
		薄板, 0.125 in. (3.2mm)	55.2	381	110.2	760	26
溶接 したまま	シールドメタルアーク (被覆アーク溶接棒)	厚板, 0.250 in. (6.4mm)	56.7	391	109.8	757	26
		厚板, 0.375 in. (9.5mm)	55.4	382	110.2	760	26
		薄板, 0.125 in. (3.2mm)	59.1	407	110.2	759	26
溶接 したまま		厚板, 0.250 in. (6.4mm)	53.1	365	107.1	738	25
		厚板, 0.375 in. (9.5mm)	54.9	379	107.6	742	22
		薄板, 0.125 in. (3.2mm)	53.1	366	103.7	715	22
溶接 したまま		厚板, 0.250 in. (6.4mm)	55	379	110.8	764	33
		厚板, 0.375 in. (9.5mm)	57	393	106.4	734	24

溶接(続き)

溶接金属の平均値

試験	温度	0.2% 耐力		極限引張強さ		伸び	
°F	°C	ksi	MPa	ksi	MPa	%	
RT	RT	66.4	458	98.6	680	28	in 1 inch
600	316	52.1	359	80.4	554	27	in 1.125 inches
1000	538	49.2	339	76.3	526	28	in 1.125 inches
1500	816	38.2	263	56.7	391	45	in 1.125 inches

RT= 室温

溶接後および時効後の平均引張データ、室温*

石以及6550000 F1700								
形態	時効温度		時効時間	0.2% 耐力		極限引張強さ		伸び
	°F	°C	h	ksi	MPa	ksi	MPa	%
厚板 板厚:1/2 in (12.7mm)	1600	871	8000	47.9	330	109	752	22
			1000	66	455	126.9	875	33
	1200	649	4000	86.5	596	150.1	1035	19
ガスタングステンアーク			8000	82.9	572	145.5	1003	18
カスダングステンドーグ 溶接した厚板。			1000	58.2	401	128.2	884	19
板厚:1/2 in.(12.7mm)	1400	760	4000	62.3	430	127.4	878	18
			8000	62.3	430	125.2	863	15
	1600	1600 871	4000	49.7	343	105.3	726	15
			8000	46.9	323	98	676	16
			1000	87.5	603	123	848	8
	1200	649	4000	86	593	139.3	960	8
			8000	86.8	598	131.8	909	9
△ ☆ 拉 △ 尼 **			1000	62.7	432	113.5	783	12
全溶接金属**	1400	760	4000	60.6	418	110.5	762	6
			8000	59.8	412	97.7	674	7
	1600	871	1000	48.3	330	92.8	640	9
	1000	0/1	8000	46.3	319	92.7	639	1

^{*} 各形態に対する試験データは単一のヒートから採取したサンプルのものです。

^{**1}回の試験データ。ガスタングステンアークで溶接。

適合規格および基準

規格

	ELLOY® X 合金					
(N06002, W86002)						
	AMS 5536					
薄板、厚板および帯板	SB 435/B 435					
	P= 43					
	AMS 5754					
	SB 572/B 572					
ビレット、ロッドおよび棒	B 472					
	P= 43					
	SFA 5.11/ A 5.11 (ENiCrMo-2)					
被覆アーク溶接棒	F= 43					
	SFA 5.14/ A 5.14 (ERNiCrMo-2)					
裸溶接棒およびワイヤ	AMS 5798					
ו יייייייייייייייייייייייייייייייייייי	F= 43					
継目なしパイプおよび	SB 622/B 622					
チューブ	P= 43					
	AMS 5588					
溶接パイプおよび	SB 619/B 619					
チューブ	SB 626/B 626					
	P= 43					
A J	SB 366/B 366					
 継手類	P= 43					
鍛造材	AMS 5754					
	17742 No. 2.4665					
DIN	NiCr22Fe18Mo					
H	NACE MR0175					
その他	ISO 15156					
	130 13130					

基準

HASTELLOY® X 合金 (N06002, W86002)			
ASME	Section I	-	
	Section III	Class 1	800°F (427°C)¹
		Class 2	800°F (427°C) ⁵
		Class 3	800°F (427°C) ⁵
		Classes TC and SC	800°F (427°C)¹
	Section IV	HF-300.2	1
	Section VIII	Div. 1	1650°F (899°C) ²
		Div. 2	900°F (482°C) ¹⁸ 1650°F (899°C) ⁵ 800°F (427°C)
	Section XII	650°F (343°C) ²	
	B16.5	1500°F (816°C) ³	
	B16.34	1500°F (816°C)⁴	
	B31.1	-	
	B31.3	1500°F (816°C	
MMPDS		6.3.1	

1承認された材料形態: 厚板、薄板、棒、溶接パイプ/チューブ、継ぎ目なしパイプ/チューブ

2承認された材料形態: 厚板、薄板、棒、継手類、溶接パイプ/チューブ、継ぎ目なしパイプ/チューブ、ボルト類

免責事項:

Haynes International, Inc. は、本パンフレットに記載されているデータの精度・正確性を保証するために妥当な努力を払っておりますが、データの精度、正確性、あるいは信頼性について、いかなる表明も保証もいたしません。すべてのデータは、一般的な情報のみであり、設計上のアドバイスを提供するものではありません。ここに開示されている合金特性は、主に Haynes International, Inc. によって行われた作業に基づいており、場合によっては公開文献の情報によって補足されているため、そのような試験の結果のみを示すものであり、保証最大値または最小値と考えてはなりません。実際の使用条件で特定の合金を試験して特定の目的に対する適合性を判断するのはユーザーの責任です。

特定の製品に含まれる特定の元素濃度とその潜在的な健康への影響については、Haynes International, Inc. が提供する安全データシートを参照してください。特記のない限り、すべての商標は Haynes International, Inc. が所有しています。

³承認された材料形態: 厚板、棒

⁴承認された材料形態: 厚板、棒、継ぎ目なしパイプ/チューブ

⁵承認された材料形態: 溶接パイプ/チューブ、継ぎ目なしパイプ/チューブ

⁶承認された材料形態: 厚板、薄板、ロッド