HAYNES® 617 合金

主な特徴

HAYNES® 617 合金 (UNS N06617) は、高温において冶金学的安定性、強度、および耐酸化性 の良好な組み合わせを有する ニッケルークロムーコバルトーモリブデン合金です。この合金は、 従来の技術で容易に成形および溶接することができます。HAYNES® 617 合金は、ガスタービン の燃焼器内筒、ダクト、尾筒などの用途に使用されます。最新の用途に対しては、代替品とし てHAYNES® 230® 合金を用いることをお考えください。

標準組成

重量%

ニッケル:Ni	54 Balance
コバルト:Co	12.5
クロム:Cr	22
モリブデン:Mo	9
マンガン:Mn	0.2 max.
ケイ素:Si	0.2 max.
鉄:Fe	1
チタン:Ti	0.3
アルミニウム:Al	1.2
炭素:C	0.07
ホウ素:B	0.006 max.

クリープラプチャー強度

溶体化処理した薄板

	温度			下記時間で用	所定のクリーブ	を生じるおお。	よその初期応え	b
温 	退	クリープ	10 H	ours	100 H	lours	1,000) Hours
°F	°C	%	ksi	MPa	ksi	MPa	ksi	MPa
		0.5	18.7	129	14.5	100	11	76
1400	760	1	20.5	141	15.5	107	12	83
		R	33*	228*	26	179	20	138
		0.5	13.2*	91*	10.2	70	7.7	53
1500	816	1	14.0*	97*	10.8	74	8.5	59
		R	23.5	162	17.0	117	12.2	84
		0.5	9.5	66	7.3	50	5.0*	34*
1600	871	1	10.0	69	7.7	53	5.3*	37*
		R	16.5	114	11.4	79	7.3	50
		0.5	6.5	45	4.3	30	2.9*	20*
1700	927	1	7.4	51	4.8	33	3.2*	22*
		R	11.7	81	7.4	51	4.5	31
		0.5	-	-	2.9	20	1.7	12
1800	982	1	-	-	3.3	23	1.9	13
		R	-	-	5.2	36	2.3	16

^{*}著しく外挿した値

耐酸化性

空気流中での耐酸化性の比較, 1008 時間*

	,	1800°F	(982°C)	2	2000°F (1093°C)		S)	2	100°F	(1149°C		2:	200°F ((1204°C	C)
合金		均 レロス	平 酸化原	均 層厚さ	平 メタル	-	平 酸化原	-	平 メタル	_	平 酸化原	-	平 メタル	_	平 酸化原	-
	Mils	μm	Mils	μm	Mils	μm	Mils	μm	Mils	μm	Mils	μm	Mils	μm	Mils	μm
214 [®]	0.1	3	0.3	8	0.1	3	0.2	5	0.1	3	0.5	13	0.1	3	0.7	18
230 [®]	0.2	5	1.5	38	0.5	13	3.3	84	1.2	30	4.4	112	4.7	119	8.3	211
Х	0.2	5	1.5	38	1.3	33	4.4	112	3.6	91	6.1	115	-	-	-	-
601	0.4	10	1.7	43	1.3	33	3.8	97	2.8	71	6.5	165	4.4	112	7.5	191
625	0.4	10	1.9	48	3.5	89	7.8	198	18.3	465	20.2	513	-	-	-	-
617	0.3	8	2.0	51	0.6	15	3.8	97	1	25	5.2	132	10.7	272	12.6	320
HR-120 [®]	0.4	10	2.1	53	1	25	4.4	112	7.9	201	10.1	257	21.7	551	25.4	645
556 [®]	0.4	10	2.3	58	1.5	38	6.9	175	10.4	264	17.5	445	-	-	-	-
600	0.3	8	2.4	61	0.9	23	3.3	84	2.8	71	4.8	122	5.1	130	8.4	213

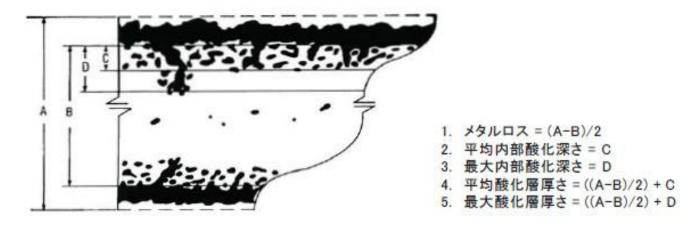
^{*}試料を通過する空気流の流速は7.0 ft/min (213.4 cm/min)。試料は、1週間に1回のサイクルで室温まで冷却。

静止空気中に曝露された耐熱合金の薄板(0.060 - 0.125"/1.52 - 3.18 mm)の酸化量

		1800°F (98	2°C), 8640 h	2100°F (1149°C), 8640 h					
合金	メタル	ルロス 平均酸化		化層厚さ メタル		レロス	平均酸化層厚さ		
	mils	μm	mils	μm	mils	μm	mils	μm	
214 [®]	0.1	3	0.2	5	-	-	-	-	
188	0.4	10	3	76	-	-	-	-	
230 [®]	0.5	13	3.4	86	11.1	282	34	864	
617	0.7	18	3.7	94	21.3	541	37.2	945	
Х	3	76	5.1	130	-	-	-	-	
556®	7.6	193	11.9	302	>247.5	>6287	>247.5	>6287	
HR-120®	9.2	234	14.4	366	43.7	1110	53	1346	
HR-160®	2.6	66	17.7	450	7.6	193	58.7	1491	

試料は1か月に1回、室温まで冷却。

耐酸化性(続き)


動的酸	化試驗	(13-	-+-	リゲ)
多りしょり日本		\		

	1	600°F (871°C)/2000 時間		1800°F (982°C)/1000 時間				
合金	合金 メタルロス		平均酸	平均酸化層厚さ		レロス	平均酸化層厚さ		
	Mils	μm	Mils	μm	Mils	μm	Mils	μm	
214®	1.3	33	1.3	33	1.5	38	1.8	46	
625	1.2	30	2.2	56	3.7	94	6.0	152	
188	1.1	28	2.9	74	1.1	28	3.2	81	
230®	0.9	23	3.9	99	2.8	71	5.6	142	
556®	1.5	38	3.9	99	4.1	104	6.7	170	
Х	1.7	43	5.3	135	4.3	109	7.3	185	
617	2.0	51	7.8	198	2.4	61	5.7	145	
601	1.9	48	9.6 244		5.7	145	板を	板を貫通	
HR-120®	-	-	-	-	6.3	160	8.3	211	

	2	000°F (1093°	C)/500 時間		2100°F (1149°C)/200 時間				
合金	合金 メタルロス		平均酸	平均酸化層厚さ		レロス	平均酸化層厚さ		
	Mils	μm	Mils	μm	Mils	μm	Mils	μm	
214®	1.2	30	1.5	38	2.0	51	2.1	53	
625	消	滅	-	-	-	-	-	-	
188	10.9	277	12.5	318	8.0	203	9.7	246	
230®	7.1	180	9.9	251	6.4	163	13.1	333	
556®	9.9	251	12.1	307	11.5	292	14	356	
Х	11.6	295	14.0	356	13.9	353	15.9	404	
617	13.3	338	20.9	531	13.8	351	15.3	389	
601	-	-	-			414	板を貫通		
HR-120®	-	-	-	-	-	-	-	-	

バーナーリグ酸化試験では、0.375 in \times 2.5 in \times 特定厚さ (9.5mm \times 64mm \times 特定厚さ) の複数の試料を回転する保持装置に取付け、燃料油 (No.1燃料油:2、No.2燃料油:1の混合油)を約50:1の空燃比で燃焼させてできる燃焼ガス中に曝します。燃焼ガスの流速は、マッハ数が約0.3です。試料は30分毎に自動的に燃焼ガス流から取り出され、ファンで500 (260) (260) 以下に冷却された後、燃焼ガス流中に戻されます。

環境試験結果を評価するために使用する金属組織学的手法

引張特性

典型的な引張特性,プレート(厚板)

試験	試験温度		耐力	極限引	張強さ	伸び
°F	°C	ksi	MPa	ksi	MPa	%
RT	RT	53.4	368	117.2	808	53.3
1000	538	36.6	252	89.1	614	65.8
1200	469	34.4	237	91.2	629	69.2
1400	760	34.9	241	70.8	488	87.2
1600	871	31.0	214	41.3	285	97.9
1800	982	15.7	108	22.2	153	97.6
2000	1093	7.8	54	11.3	78	94.6

典型的な引張特性,シート(薄板)

試験	温度	0.2% 耐力		極限引	張強さ	伸び
°F	°C	ksi	MPa	ksi	MPa	%
RT	RT	55.1	380	121.4	837	50.9
1000	538	38.1	263	103.9	716	58.9
1200	469	38.0	262	104.9	723	75.2
1400	760	37.6	259	73.9	510	89.8
1600	871	28.7	198	38.3	264	131.7
1800	982	13.2	91	19.6	135	111.4
2000	1093	6.4	44	9.7	67	92.2

熱安定性

熱曝露後の厚板の室温特性

条件	0.2% 耐力		極限引張強さ		4D 伸び	絞り	衝撃	強さ
	ksi	MPa	ksi	MPa	%	%	ftlbs.	J
溶体化処理	50.2	346	116.3	802	56.3	50.9	186.5*	253*
+ 1200°F (649°C)/1,000 hr.	83.3	574	145.9	1006	37.6	40.0	53.5	73
+ 1200°F (649°C)/4,000 hr.	88.5	610	152.4	1051	34.4	36.4	53.4	72
+ 1200°F (649°C)/8,000 hr.	90.4	623	152.8	1054	34.3	36.6	51.5	70
+ 1400°F (760°C)/1,000 hr.	71.6	494	138.7	956	39.7	45.2	57.0	77
+ 1400°F (760°C)/4,000 hr.	67.9	468	136.5	941	38.6	41.2	51.3	70
+ 1400°F (760°C)/8,000 hr.	64.5	445	136.0	938	37.1	36.9	35.5	48
+ 1400°F (760°C)/1,000 hr.	50.7	350	121.2	836	49.9	51.7	90.0	122
+ 1600°F (871°C)/4,000 hr.	49.7	343	119.7	825	48.0	51.3	80.6	109
+ 1600°F (871°C)/8,000 hr.	47.6	328	118.8	819	49.8	50.5	67.0	91

^{*}破壊せず。

物理的特性

物理的特性	英	国単位	メート	
密度	RT	8.36 g/cm ³	RT	0.302 lb/in ³
溶融温度	2430- 2510°F	-	1332-1377°C	-
	400°F	113 BTU-in/ft ² -hr-°F	200°C	16.2 W/m-°C
	800°F	137 BTU-in/ft ² -hr-°F	400°C	19.4 W/m-°C
	1000°F	149 BTU-in/ft ² -hr-°F	500°C	20.9 W/m-°C
劫仁举去	1200°F	161 BTU-in/ft ² -hr-°F	600°C	22.5 W/m-°C
熱伝導率	1400°F	173 BTU-in/ft ² -hr-°F	700°C	24.0 W/m-°C
	1600°F	185 BTU-in/ft ² -hr-°F	800°C	25.6 W/m-°C
	1800°F	197 BTU-in/ft²-hr-°F	900°C	26.1 W/m-°C
	2000°F	209 BTU-in/ft ² -hr-°F	1000°C	28.7 W/m-°C
	70-800°F	7.6 µin/in -°F	20-450°C	13.7 μm/m- °C
	70-1000°F	7.7 µin/in -°F	20-500°C	13.8 µm/m- °C
	70-1200°F	8.0 μin/in -°F	20-600°C	14.2 μm/m- °C
平均熱膨張係数	70-1400°F	8.4 μin/in -°F	20-700°C	14.7 μm/m- °C
	70-1600°F	8.7 μin/in -°F	20-800°C	15.3 μm/m- °C
	70-1800°F	9.0 μin/in -°F	20-900°C	15.8 μm/m- °C
	70-2000°F	9.2 μin/in -°F	20-1000°C	16.2 μm/m- °C
	70°F	48.1 µohm-in	21°C	122 µohm-cm
	400°F	49.5 µohm-in	200°C	126 µohm-cm
	800°F	50.3 μohm-in	400°C	128 µohm-cm
事 年 任 壮	1000°F	51.5 µohm-in	500°C	130 µohm-cm
電気抵抗	1200°F	52.4 µohm-in	600°C	131 µohm-cm
	1400°F	52.8 µohm-in	700°C	133 µohm-cm
	1600°F	52.7 μohm-in	800°C	134 µohm-cm
	1800°F	53.9 µohm-in	900°C	134 µohm-cm
	70°F	30.6 x 10 ⁶ psi	20°C	211 GPa
	400°F	29.0 x 10 ⁶ psi	200°C	201 GPa
	800°F	26.9 x 10 ⁶ psi	400°C	188 GPa
	1000°F	25.8 x 10 ⁶ psi	500°C	180 GPa
動弾性係数	1200°F	24.6 x 10 ⁶ psi	600°C	173 GPa
	1400°F	23.3 x 10 ⁶ psi	700°C	166 GPa
	1600°F	21.9 x 10 ⁶ psi	800°C	157 GPa
	1800°F	20.5 x 10 ⁶ psi	900°C	148 GPa
	2000°F	18.8 x 10 ⁶ psi	1000°C	139 GPa

RT= 室温

熱処理

指定されない限り、HAYNES® 617 鍛造合金は、通常、溶体化処理した状態で提供されます。この合金は、特性を最適化するために、通常、製品の形態によって 2100℃~2150℃(1149℃~1177℃)の範囲で断面の厚さに見合った時間保持し、急冷あるいは水冷するという条件でミルアニールされます。

硬度および結晶粒サイズ

形態	硬度	典型的な ASTM結晶粒度
薄板	88 HRBW	3 - 4.5
厚板	91 HRBW	3 - 5
棒	88 HRBW	3 - 4.5

全ての試料は、溶体化処理した状態で試験を実施。

加工および溶接

HAYNES® 617 合金は、ガスタングステンアーク溶接(GTAW)、ガスメタルアーク溶接(GMAW)、シールドメタルアーク溶接(SMAW)、電子ビーム溶接、および抵抗溶接により容易に溶接できます。サブマージアーク溶接は、この溶接プロセスには母材に対する入熱が大きく、溶接部の冷却が遅いという特徴があるため、お薦めできません。これらの要因は、溶接による拘束を高めて割れを起こしやすくします。

母材の準備

接合面および近接する領域は、溶接する前に完全に清浄にしておく必要があります。全ての潤滑剤、オイル、クレヨンの痕、硫黄化合物、ならびにその他の異物は除去しなければなりません。接合領域が銅あるいは銅含有物質と接触することを避けなければなりません。溶接する場合に、この合金が溶体化処理されていることが好ましいですが、必須ではありません。

溶加金属の選定

617合金の接合には、同一組成の溶加金属を使用することを推奨します。異材溶接に対して推奨する溶加金属については、Haynes Welding SmartGuide をご利用ください。.

予熱、中間パス温度、および溶接後の熱処理

予熱は必要ありません。予熱は、通常、室温(典型的な作業場の環境条件)として指定されています。中間パス温度は、200°F(93°C)以下に保たなければなりません。汚染物質が混入することがないのであれば、必要に応じて、溶接パス間で補助冷却手段を用いることが出来ます。617合金には、溶接後の熱処理は、通常、必要ありません。

適合規格および基準

規格

HAYNES® 617 合金			
(N06617, W86117)			
薄板、厚板および帯板	AMS 5888		
	AMS 5889		
	SB 168/B 168		
	P= 43		
ビレット、ロッドおよび棒	SB 166/B 166		
	B 472		
	AMS 5887		
	P= 43		
被覆アーク溶接棒	SFA 5.11/ A 5.11 (ENiCrCoMo-1)		
	F= 43		
裸溶接棒およびワイヤ	SFA 5.14/ A 5.14 (ERNiCrCoMo-1)		
	F= 43		
継目なしパイプおよびチューブ	SB 167/B 167		
	P= 43		
溶接パイプおよびチューブ	-		
継手類	-		
鍛造材	SB 564/B 564		
	P= 43		
DIN	-		
その他	-		

基準

HAYNES® 617 合金 (N06617, W86117)				
	Section I	1650°F (899°C)¹		
Section Section Section B16.8		Class 1	-	
	Section III	Class 2	-	
		Class 3	-	
	Section IV	HF-300.2	-	
		Div. 1	1800°F (982°C) ¹	
	Section VIII		Code Case 2776	
	Section viii		1650°F (899°C) ²	
		Div. 2	-	
	Section XII	-		
	B16.5	-		
	B16.34	-		
	B31.1	1200°F (649°C)¹		
B31.3 -		-		

[「]承認された材料形態: 厚板、薄板、棒、鍛造材、継ぎ目なしパイプ/チューブ

²承認された材料形態: ボルト類

免責事項:

Haynes International, Inc. は、本パンフレットに記載されているデータの精度・正確性を保証するために妥当な努力を払っておりますが、データの精度、正確性、あるいは信頼性について、いかなる表明も保証もいたしません。すべてのデータは、一般的な情報のみであり、設計上のアドバイスを提供するものではありません。ここに開示されている合金特性は、主に Haynes International, Inc. によって行われた作業に基づいており、場合によっては公開文献の情報によって補足されているため、そのような試験の結果のみを示すものであり、保証最大値または最小値と考えてはなりません。実際の使用条件で特定の合金を試験して特定の目的に対する適合性を判断するのはユーザーの責任です。

特定の製品に含まれる特定の元素濃度とその潜在的な健康への影響については、Haynes International, Inc. が提供する安全データシートを参照してください。特記のない限り、すべての商標は Haynes International, Inc. が所有しています。